Slip Stacking

Objective: Increase total proton flux on pbar target by 80%.

Solution: Slip stack two booster batches into one double
charged batch while maintaining reasonable longitudinal
emmitance.

Work to do:

- Make necessary system changesto facilitate dlip
stacking mechanics.

- Beam |oading compensation.



Slip Stacking Process
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First batch injection: First batch injected on main injector’s central orbit.

First batch declerated to make room for second batch.
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Second batch injection on the main injector central orbit, just behind the first batch. Batch profileimmediately after capture.



Figure 3.1.2.1.5
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Frequency offset program and RF drive level program for slip stacking. The error signals
on the cavity feedback loops are sampled before the cavities are gated off. The first batch
isinjected and decelerated. The frequency difference between ‘A’ and ‘B’ outputs are

kept constant.




Figure 3.1.2.1.6
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Frequency offset program and RF drive level program for slip stacking. After the
second batch is injected, the beam is accelerated so that the energy offsets are
symmetric about the nominal orbit. Just before the batches are combined, the
energy difference isreduced. The frequency offsets are set to zero, and the RF
drive isincreased simultaneously to hold both batches at capture.




Figure 3.1.3.1.3
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Early attempt at smulating slip stacking. This shows the beam profile at
capturetime. The longitudinal emmitance of each bunch has not diluted
significantly, and the final emmitance is about three times the initial bunch
emmitance. These results do not include beam loading.



Figure 3.1.3.1.4

Ml Slip Stacking

Simulation of capture
including reducing energy
offset before capture. This

improves final emmitance by
about 17%. Does not include

effects of beam loading.

[ter 2027 2.803E-02 sec
Hg {Mevl T (e 5] E; {Mevy h v oMY w ideg)
1. 4804FE+0 1 3.5950E-01 B.ASTIE+HDD SRE 2.000E -1 (OO0 -+
e furn) pelst (Mav s 1) L]
4,2F16E-03 —2&6327E+03 —B,6173E-83
T (s) Sy (8v 8] N
1. 1140E—05 1. 3261E—01 a2
o
-l
=
&
=
. .
=) = oay
Lol
|
Ll
o]
-l
|
U3 % contour 2.S7E—01 Vs maurcel
—0.3 —n.2 -1 Q a1 &2 o3
— g (degree)}

Jmaclach 1B=Cob=2001 12:32



Figure 3.1.4.2.4

Ml Slip Stacking — 10°13 Protons
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Final profile for captured beam for both batches for slip stacking including
beam loading with no compensation. Notice the effect of transient beam

loading on the final bunches.



Figure 3.1.5.2.4

Ml Slip Stacking — 10°13 Protons, 100x de—Q
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Final profile for captured beam for both batches for slip stacking including
beam loading with an ideal direct RF feedback system with 40dB of loop gain.



Figure 3.1.5.3.3
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Cavity response with 20dB of direct RF feedback beam loading
compensation (pink) and without (green).



Figure 3.1.5.3.4
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Cavity response with 20dB of direct RF feedback beam loading compensation.
Notice that the real part of the response iswell below +1.



Figure 3.1.3.2.9
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Mountain range plot showing main injector dip stacking just after the second batch is injected.




Figure 3.1.3.2.10
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Mountain range plot showing main injector dip stacking when the two batches are captured into a single batch.



Plot of main injector dlip stacking cycle. I:RFSUML isthe total RF voltage seen by
the beam. [:IBEAMM isthe total beam intensity in the main ring. 1:BLM53
represents the 53 MHz component of beam current. This gives an indication of the
amount of beam till left in the bucket.
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Figure 3.1.5.4.1

Wall Current
Monitor
_’
N In pj gOut )
A" 70 MHz N
L Fanout Delay
Distribution Y 10 MHz PU FO
L B— Clk Clk
R T ) !
" A 3
Ref —> X QR Is ToLLRF
Delay Phase Det.
Feedforward beam signal processing. Signal from the Transit-Time [ \ '
wall current monitor is downconveted, filtered, and Dd ay Fanout
delayed digitally. The output from the delay enters the 1 MHz

transit-time delay fanout.




Figure 3.1.5.4.3
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Results of feedforward compensation on a single cavity during a
normal stacking cycle at high field. The blue trace isthe
spectrum of the cavity gap without compensation, and the green
trace is with compensation.



