Accelerator Issues

Fermilab Antiproton Experiment

Keith Gollwitzer
Antiproton Source Department
Accelerator Division
Fermilab
Outline

• Overview Accelerator Complex
 – Protons
 – Antiproton Stacking

• Accumulator Running for Experiment
 – Protons
 – Cycle time

• Accelerator work to be done
 – Equipment
 – Commission Ramps
Protons for Antiproton Production

• Current Operation
 – 11 Booster Batches are loaded into Main Injector
 • Batches are slip stacked to increase intensity
 • Main Injector cycle time is 2.2 sec
 – Length set by loading 11 batches
 – 2 batches are sent to Antiproton Production Target
 • 8×10^{12} Protons on Target
 • The other 9 batches go to NuMI

• Note that Booster output is 1.1×10^{16} Protons per hour
Antiproton Stacking

- 8GeV negative secondaries are directed into the Debuncher Ring
 - Only antiprotons survive
 - In 2.2sec, increase beam density
 - Transfer to Accumulator before next proton pulse sent to target

- Accumulator further increases density
 - Stacktail increases longitudinal density

- Numbers
 - 27×10^{10} antiprotons per hour for cores $< 25 \times 10^{10}$
 - Production efficiency is 20 antiprotons per 10^6 PoT
 - Rate decreases to $\sim 18 \times 10^{10}$ antiprotons per hour for cores of $\sim 100 \times 10^{10}$
 - Fewer PoT or slower cycle time increase efficiency to above 30 antiprotons per 10^6 PoT
Protons for Antiproton Production

• Future Operation (Nova era)
 – 12 Booster Batches are loaded into Recycler
 • Batches are slip stacked to increase intensity
 • One turn injection into Main Injector
 • Main Injector cycle time is then 1.33sec
 • Booster output will be 1.4×10^{16} Protons per hour
 – Proton Economics
 • Other experiments will vie for remaining Booster cycles
 • Current Proton Plan is 1.4×10^{16} Protons per hour
 – 2 batches are sent to Antiproton Production Target every other cycle
 • Most likely 7×10^{12} Protons on Target
 • Most likely only stack 4-6hr/day
 – Reduction to Nova for a day is 50% of 2/12 for 6/24 = 2.5%
Antiproton Source Cycle for Experiment

• Stack 4-6hrs
 – Stack rate: average 20×10^{10} antiprotons per hour
 – Beam intensity will be 60 to 100×10^{10} antiprotons

• Preparation of Antiproton Beam (<2hr)
 – Cool Beam
 – Decelerate Beam to desired energy
 – Cool Beam again before interacting with target

• Run Experiment (16-24hr)
 – Continuous readout/recording orbit and f_{rev}
 – Cool Beam due to target heating
Accelerator Equipment Needed

- **Ramp Control System**
 - Synchronizes changes of magnet currents with RF cavities frequencies during deceleration ramp.

- **Switchable Cooling Delay Lines**
 - Stochastic cooling timing adjustments for different energies

- **Movement of 4-8GHz Core Momentum cooling tanks**
 - A kicker tank is now encroaching into experiment area
 - Need to move kicker tanks upstream and remove/reposition stairs.

- **Continuation of procuring/making spares**
Commissioning

• Prior to running beam with detector in place, will want to re-install concrete shielding to protect experiment from showers caused by secondaries during stacking

• Ramp commissioning is done with protons
 – Will do on core orbit (not central orbit due to location of 4-8GHz momentum pick-ups)
 – Takes 2-3 months depending upon desired lowest energy and ramping efficiency
Conclusion

• Fermilab’s Antiproton Source can host an experiment with little accelerator work and commissioning.
Back-ups
World’s Best Antiproton Source

- Antiprotons produced
 - Fermilab
 - 2010 • Current: 600×10^{10} pbars/day ; 12×10^{14} pbars/year
 - 2013 • Future: 100×10^{10} pbars/day ; 2×10^{14} pbars/year
 - CERN AD
 - 2009 • Current: 350×10^{10} pbars/year
 - GSI FAIR
 - 2017? • Modules 0-3: 15×10^{10} pbars/day ; 0.4×10^{14} pbars/year
 - 2020? • Module 5: 70×10^{10} pbars/day ; 1×10^{14} pbars/year
 - 2025+ • Upgrade: 140×10^{10} pbars/day ; 2×10^{14} pbars/year
Other Uses of Antiproton Source

• Mu2e has CD0
 – Tunnel Depth radiation issues
 – Earliest to be ready 2017
 • Will need 1 year to connect to extraction tunnel, remove unwanted components and install new items
• DOE is to evaluate g-2 during special Aug. review
 – Evolving desires make it more $ and more $
 – In my opinion, unrealistic about being able to support all that g-2 needs along with other projects
 – Will require more AD people to operate than antiproton experiment
• Both face proton economics issues