Instabilities, Chromaticity and \(\eta \) in the Debuncher

A large body of observations concerning Debuncher instability exist from the 1985 running. However these were all en passant to the main tasks of commissioning. I have sifted through all documentation again and find that no definite conclusions can be made about the quantitative nature of these instabilities (eg. mode type; number or current threshold for well defined and known lattice conditions; blow up e folding times; interaction with cooling systems). I will summarize this body of observation, and then draw several suggestive conclusions. This will be oriented toward guiding the upcoming (higher intensity!) runs. In particular I will outline procedures to illucidate and diagnose the exact instability situation.

I Summary

Overview: The observed instabilities fall in two general categories. First, "high" current primary proton beam (PPB) induced. Depending on current, bunch number and DRF-1 tune, these caused clear and gross beam \(\varepsilon \), and \(\delta p/p \) disruption, severely degraded beam lifetime and caused TWT overloade. However the current threshold erratically changed (although no rough correlated documentation of relevant conditions exists) from below 100\(\mu \)A to several ma. Although such instability was not surprising given the \(\eta \) and \(\xi \) of the debuncher and the beam \(\delta p/p \). The stabilizing time for, e.g., beam lifetime was surprisingly long (up to \(\geq 1000s \)).

Second, benign instabilities persisted with secondary beams \(\leq 4-5\mu \) Amp). Coherent [Low frequency] lonitudinal motion was observed. The existence of this seemed associated with DRF2 use, and the coherence was apparently "damped" by the transverse cooling. However no blow up of any plane emittance was conclusively observed. The only deleterious effect may have been TWT trips when running with the highest secondary currents (\(\leq 5\mu \)A protons).
II High Current Instabilities

During D.B. tuning studies with primary protons we injected beam with the following properties:

| Table I |
|-----------------|-----------------|
| Average Intensity, I (×DCCT) | up to ~20mA |
| Δp/p (FWHM) | 0.0015 - 0.004 |
| n | - 0.0055 |
| ε⊥ (inj) | 2-4π μm |
| ε⊥ (coast) | 8-13π μm |
| ξ | -(?)0.1-0.4 |
| #Bunches (@ 53 MHz) | up to 20 contiguous |

DRF 1: each of 6-7 cavities:

Q	~ 1.1x10⁴
Rshunt/Q	~ 180 Ω
Detuning: vres - vₒ	~-25KHz

Figure 1. characterizes the "settling" down of the multi booster bunch injected beam. The natural debunching time from shearing out of one bunch is ~ 0.3s(=τₒ). Indeed, we always observed "true Schottky" peaks at times > 100s after injection. Such evident self bunching (via cavity impedances: DRF1 in our case) is already well known¹. Special cavities installed in the ISR to investigate such effects showed longtime results strikingly similar to Fig. 1. Since those experiments involved unbunched (initial) beams, we can conclude that our situation, though made perhaps more severe by initial bunching, is essentially due to high current and coupling impedance.

Unfortunately the precise status of DRF-1 was typically unknown. Two situations could be distinguished in the record. First with DRF-1 ~ tuned to ωₒ. The instability was so severe, Fig. 2, that the initial small Δp/p was smeared over the available (deceleration direction only) momentum aperture. This was an anomalous situation for coasting primaries, so in the sequel we treat data of the second, "detuned" case, only. By "detuned" we mean that the period of instability after injection did not substantially increase Δp/p, e.g. Fig. 3. The 25 KHz detuned condition of the cavities, table 1, may or may not have been in effect. In section III - IV we show that such a qualitative distinction is plausible.
Fig. 1 is an extreme example. Qualitatively the current ($I= DCCT$) threshold for instability past τ_D as observed on Schottkies or lifetime scans, varied from $-100 \mu A$ to over 1mA. It is important to note that this threshold correlated strongly with tuning the injection lines, suggesting a transverse nature of the instability. A more sensitive indicator of instability (or long time residual coherence of the beam) was time plots of low frequency longitudinal band power, and occurrence of TWT tripping. Definite evidence of residual coherence tripping TWT's down to $I= 5 \mu A$ exists (Fig. 4 a,b). Although longitudinal coherence persisted down to the lowest currents observable (on Schottkies), NO CONCLUSIVE TUBE TRIPS OCCURRED WITH ANY BEAM $<5 \mu A$. It was confirmed that the cooling systems themselves did not excite any instability. "old", homogenized, beam could be cooled (late PIN switched) with no trips (at I almost 10x what tripped early switched on tubes); and induce no coherence. In some cases (initially heated beam) late switched on cooling could loosen some beam, an anticipated stochastic cooling effect.

Further evidence that the instability involves transverse motion comes from Fig 5. The coherent power around -2150 MHz (peaked!) is vested in the lower side band. For the D.B. ($Q >$ half integer). This is the fast wave sideband, which cannot be unstable for any $\text{Re}(Z_{wall}) > 0$ for unbunched beams. This indicates that our instability is evidently a complex interplay between longitudinal (initial bunching structure) and transverse degrees of freedom. The fact that measured ε_1 was always $>>$ carefully injection tuned AP-2 beam ε_1 supports this. Below I show that the Z_{wall} stability margin is indeed much less than the longitudinal margin.

$$Z_{wall} = \text{III}$$

The following are calculated using known D.B. properties:

$$Z_n = [15.4i + (1-i) 1.06] \text{ Ohms}$$

which is a blend of naive pipe Z formula and bellows, valve, box, etc. contributions from B. Ng’s p Note # 314. Beam 1/2 height = 8mm.

$$|Z_n| \text{Keil, Schnell} < 5.1 \times 10^5 \Omega \text{ ma} \quad (\Delta p/p = 0.002)$$

$$Z_\perp = [18.0 \times 10^6 + (1-i) 3.6 \times 10^8] \Omega/\text{m}$$
\[|Z|_{K,Sch.} < 7.3 \times 10^6 \, \Omega \, \text{ma/m} \quad (\Delta p/p = 0.002) \]

This is for a worst case; for \(n=Q \) and where \(\xi = 0.1 \) dominates the frequency spread.

Notice that this sets a naive current threshold of 86 ma.

D.R.F. 1 impedance is not included in the above:

\[
Z_{Drf1} = 1.2 \times 10^7 \Omega \quad \frac{1 - 2i \Delta}{1 + 4 \Delta^2} \quad \text{(near resonance)}
\]

\[\Delta = \frac{Q (\omega_{res} - \omega)}{\omega_{res}} \]

- \(1.2 \times 10^7 \Omega \) on resonance
- \(-1.1 \times 10^7 \Omega \) detuned by 25 KHz

This seems uncomfortably high but is essentially purely reactive (inductive). Fortunately we are above transition so this is the correct sign for negative mass stability; i.e. we want to detune D.R.F.1 as it has been. Similarly the Robinson instability cannot occur for this \(n \) and this detuning direction.

IV. Chromaticity \((\xi) \) and \(n \) in D.B.

For a complete discussion of [especially bunched beam] instabilities we must know \(\xi \) and \(n \) precisely. Unfortunately \(\xi \) was "set" once to "zero" and not further studied. From turn by turn Fourier transform tune peak widths \(\Delta Q \)'s (FWHM) as low as 0.002 (see Fig 6) were documented. On other occasions of normal D.B. running this value was a high as 0.007. Notice that even this minimum \(\Delta Q \) gives \(|\xi| > 0.1 \).

This method does not give the sign of \(\xi \), important for transverse stability. Several existent, quiescent beam, Schottky scan pictures (-2GHz) suggest that lower sidebands were slightly wider than uppers. This says \(\xi/n > 0 \). Quantitatively these records give \(|\xi| \sim 0.16 \); in good agreement!

If such signs and values are correct the "\(\xi \) spread" and "\(n \) spread" tend to cancel (at least for the slow wave sideband). A certain mode number \(n \) will have minimum net sideband spread and hence be most critical for stability. Since \(n \) is so small this will be a high \(n \), just where we expect large \(Z \), enhancements from discontinuities[2].

\[n_{critical} = Q (1 + \xi/n) = 550 \]
It is just possible that we might have missed such a cross-over since the UHF bands were never explicitly studied. The unstable "peak" in Fig. 5 could indicate such behavior, through some what high in n_c.

In any case this suggests a good way to measure n. Sextapoles could be detuned to give a "large" negative ξ (i.e. one easily measured with precision on T-T display). If this detuning moves n_c into the cooling band we can measure n_c and hence n. Note that we would like to ensure ξ positive from the stability point of view (This turns out true also in the case of relevant bunched beam instabilities[11]).

V. LOW CURRENT INSTABILITIES

For all cases of D.B. injection with beams $\leq 5 \mu A$ no deleterious instabilities were found. For instance even with primary protons it was possible to run the TWT's at nominal power, CW (no FIN switching). However a longitudinal coherent signal persisted for 10's of seconds (Fig. 4a). No significant transverse coherence was observed (Fig. 4b).

More puzzling was that the transverse cooling effectively damped the coherence on a time scale < 10 msec (Fig. 4b). Some evidence indicated that DRF2 being on also was necessary for this coherence. Fig. 7 shows the large pick up of DRF2 imposed structure. We should easily be able to determine whether the coherence is merely this DRF2 structure. The puzzle remains of how a transverse system damps it (at how many harmonic components?). Note that we also have evidence of such coherence for $< 5 \mu A$ primary proton injection when DRF2 was off. This complication could be avoided (or perhaps clarified) by changing the longitudinal Schottky monitor harmonic from h=127 to, say, h=4x33=132 since the Fourier spectrum of the barrier bucket has nulls at multiples of 4.

VI Coherence from DRF1

Let's estimate the effects of [detuned] DRF1 on bunched beams (primaries). Especially at high injected currents, we observed dragging of the beam distribution in energy to lower energy (Fig. 2, but also similar behavior in the Accumulator and elsewhere[11]). Note from Fig. 2 that if DRF1 were detuned fully we might expect dragging by -35 KHz x 75/53 = +35 KHz, whereas only about half this is ever observed. Furthermore the beam then stabilizes (debranches fully) dissipating no further power to the cavity (since we are negative mass stable).
Using the impedance of section III, one calculates a $V_{BE} = 113$ volts for an initial fully bunched (53MHz), 5ma, injected beam driving DnB, Fully detuned. At h=84 and the low D.B. $|\eta|$ this implies a bucket height of ~ 0.7 Mev or ~ 20% of the injected beam width? Similar, the real part of Z_{cav} can be used to calculate the energy dissipation. This gives a rate for a "captured" portion of the beam smearing toward cavity reasonance of +10KHz/5sec, in reasonable agreement with observed.

Extrapolating this reasoning to low intensity (-1µA) shows that the smearing rate is too slow to be discerned. However the coherent perturbation can easily exceed the Schottky signal, at least at the cavity harmonic.

VII Measuring Z_{wall}

In particular I have some suggestions for Z_{\perp} measurement techniques. The concept is old\(^{(1)}\); that coherently kicking a coasting beam at a will give full information on $Z_{\perp}(\omega)$ if we observe the oscillations at a suitable pickup. Since the kicked beam elicits a wall response we see it as part of the total response to the kick. The problem technically is to accurately separate out the $Z_{\perp}(\omega)$ from total response.

consider the transverse case:

$$\text{response, } \chi_{\perp}(\omega) = \frac{G_{\text{D}} e^{i\phi} + G_{\text{w}(\omega)}}{(\omega \Omega)^2 - (nw - \omega_{\text{D}})^2}$$

where $\omega_0 =$ revolution frequency

$\omega_{\text{D}} =$ Driving frequency (kicker)

$\phi =$ Azimuthal phase : kicker - pickup

G_{D} is the kick amplitude and G_{w} is the net (2π azimuth integrated) wall force = i K $Z_{\perp} \langle \chi \rangle$ with K a positive constant. Assume (good approx. for D.B.) that the resonant denominator can be expressed into two entirely separate parts, i.e.

$$[(\omega Q)^2 - (nw - \omega_{\text{D}})^2]^{-1} = [2Q_{\omega} \omega_{\text{D}}(nQ \omega - \omega_{\text{D}})]^{-1} - [2Q_{\omega} \omega_{\text{D}}(n+Q) \omega]^{-1}$$

so that there is an entirely separate contribution from each sideband. For each sideband we solve, in the usual self consistant way, for $\langle \chi \rangle$:
\[\langle x \rangle^\pm = \mp \left[G_D e^{i\phi} + iKz_1(\omega_D) \right] \langle x \rangle^\pm \frac{1}{2Q_0 \omega_0} \int \frac{f(\omega)d\omega}{\omega_D - (n \pm Q) \omega} \]

Then

\[(\langle x \rangle^\pm)^{-1} = \mp j^\pm - iKz_1(\omega_D) \]

so that naively we can get \(z_1(\omega_D) \) by subtracting the response of adjacent sidebands:

\[-iKz_1^\pm(\omega_D) = 1/2 (\langle x \rangle^\pm^{-1} + \langle x \rangle^\mp^{-1}) \]

This would be an easy exercise in network analyser data manipulation. Note that we depend on \(J_+ \) and \(J_- \) being equal in magnitude, which certainly is not the general case for \(\xi \neq 0 \). In any case we can study rapid, resonant, changes in \(z_1(\omega) \) by comparing the same sign sidebands: one on and one just off resonance.
REFERENCE

2. See F. Sacherer in CERN PUB. 77-13 (1977)

Figure 1

Y = 3: IDCAN mA
(1 Hz)

0 1500 3000 4500 6000
Seconds ONCE engineering units

Discussion:
From after capture, no changes made in Debrancher.
No explanation for fast beam loss at 1/3 of run x 3.
220x Extract to Accumulator with Grp in beam at the level of 20 g/die.
Aer Injection efficiency is poor: most of the beam seems to be lost in the 1st twin.
Stud looking at 10s motors: see large loss in YNIAm.

100 Aug 30

Beam was injected into the Debuncher. It was not clear that the beam spread.

The Debuncher blew up to 2% almost immediately. The following pictures were

taken before the Machinig went down.

The previous trace with narrow

12.5 mA and a full bucket 1.2 mA and a partial bucket 0.25 mA and a part

in each case the beam current/bunch is the same. One notes that the

frequency spread is the same in all cases after 30s - 600s.

Center frequency = 74.93385 MHz; Span = 50 kHz Spectrum Anal

Settings

\[\Delta f = 12 \text{ kHz} \quad \frac{\Delta f}{f} = \frac{12 \text{ kHz}}{74,950 \text{ kHz}} = 1.6 \times 10^{-4} \]

\[\Delta P = \frac{1}{\eta} \frac{\Delta f}{f} = 1.027 \]

The momentum spread is \(p \cdot \eta = 0.005 \Delta P \approx 5 \).
The problem of page 259 is gone. When the above values are measured on a linear scale, the full width at half maximum is 7.5 kHz corresponding to a momentum spread of $0.133 \% \text{ FWHM}$.

The Darmouth currents continue on the tone of three hours ago.

The Darmouth injection beam has been tuned up to reduce the coherent oscillation.
Figure 4A

Many pics in this group, all consistent.

TWTs off at 2D+0sec on at 2D+3sec

Later this night at "lower" intensity ~ 5 ma noted 3 or 4 trips occurred.

TWT tripped

 долгия стрелка
Turning off:

- M: Q108
- M: Q109
- D: Q701
- D: Q702

and

- Reducing D: Q707 from 111 to 70 a.
- Reducing Collimators 709, 708 from 60 to

Turned off DRF3 (D: RSL2/LAM)

Note to Jeff Sauer: You're comment regarding not turning off HiM bin power to turn off Debrahner RF systems (See Page 82) indicate how not to do it but does not indicate the proper method. Please indicate the proper procedure below to turn OFF Debrahner RF systems. (1 line maximum each)

System
- Procedure
 - DRF1
 - DRF2
 - DRF3

On a see Debrahner cycle, large amplitude fluctuations observed in the power in the 127th harmonic of the revolution frequency Schottky signal implying possible interaction of beam with environment, even at square circulating. This instability may be related to the tripping of Stochastic cooling equipment (not out for these measurements)

Spectrum analyzer time
- plot of power (Amplitude actually)
- in 127th harmonic of rev frequency vs time (linear scale)

DCCT does not show this structure. It does not seem to be in Transverse Schottky signal either. See hard copy of for plot of DCCT, longitudinal Schottky, and transverse Schottky.
Fig 5

BRIGHT = MAX HOLD

\[\approx 80 \, \mu A \]

BRIGHT: emission at DCN port \(\approx 80 \, \mu A \)

LITE: LATE TRUE

BRIGHT = MAX HOLD with beam

\[\approx 80 \, \mu A \] after beam set

LITE "NO SIGNAL" (which trips PRTS off?)

\[\approx 80 \, \mu A \] after injection on TRANSCIENCE stochastic pu's

NOT MAX HOLD DEC 11

Finally, to see exact time structure, zero span "one of the lower signal in" (if REV. H is "open"ed" - THIS TRANSIENT NOT
MULTIPLE TURN DISPLAY, SECTOR D1 MUX

RMS 2.9 mm

RMS 6.6 mm

Gx = .227 Gy = .213

f = .25
(a) IN THE LINE- BY- TERN DISPLAY (DEBUNCHER) FOR 50, 45, 40, 35 KV.
(SEE HARD COPY LOG).

IT IS THE DEBUNCHER ACCEPTANCE WITH SEXTUPLES
AND IN A LINE QUAD, DETUNED).

(THIS HARD COPY LOG) PAINT TOO HARD TO INTERPRET.

NOTICED EFFECT OF DEBUNCHER
BEAM GAP ON DEB. LONGITUDINAL PICT.
DRF2 ON
THIS IS A LARGE EFFECT AND
MAY POTENTIALLY CONFUSE BEAM INTENS.

MEASUREMENTS USING THE DEB. LONG
SCHOTTKY, AND REVOLUTION FREQ. HEAVY.

IT SHOULD BE NOTED THAT ONE:

1. OBSERVES SYNCHROTRON SATELITES
 (AC = 350 Hz)

2. PICTURES 1 & 2 ARE FROM THE SAM
 6:54 P.M.

DRF2 ON