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This memo is written as a note for some one who already understands stochastic
cooling and wants to understand the  mathematical basis for the computer code used in the
simulation.

SYSTEM GAIN FUNCTION

The system gain G is defined as

∆x = 2Gx [1]

where ∆x = the average change in “amplitude squared” per turn per Schottky band.  The
total change is given by a summation over Schottky bands.  The “amplitude squared” is
measured in units of emittance, namely, m-rad.  Equation [1] includes a factor of 1/2 from
averaging over cos2 φ , where φ is the phase of the betatron motion.

The system gain is the product of the pickup response (p), the electronic gain (g),
and the kicker response (k).

G = p • g • k [2]

The pickup response is defined so that the voltage into a 1Ω system produced by a particle
with amplitude squared x per Schottky band is

Vp = 2 p x [3]

The rms voltage produced is

Vp
rms = p x [4]

Define the kicker voltage (also in a1Ω system) as

Vk = gVp

= 2pg x
[5]



It follows from [1] through [5] that the kicker response k is given by

∆x = 2Vkk x [6]

The kick k is equivalently defined as :

∆θ =
1
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[7]

because
**********************************

x = β yθ
2 []

and

∆x = 2βθ∆θ []

In addition G includes the bad mixing and phase advance factors which are
*******************

phase = e± iα 2
Q xb

SIGNAL SUPPRESSION FACTOR

The beam response if given by
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and the gain function is reduced by the factor d, where

  d = 1 + FG .

FOKKER-PLANCK EQUATION

The Fokker-Planck equation is

∂Ψ
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= − ∂
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[8]

where Ψ is the particle density per unit x and Φ is the flux of particles (number per unit
time) crossing a given value of x.



The boundary conditions are

Φ 0,t( ) = 0 [9]
and

Ψ xmax , t( )= 0 [10]

The first condition is that the flux of particles into x<0 is zero.  The second is that there is
a hard aperture at x = xmax  and that the particle density is zero for x ≥ xmax .

The first moment of the Fokker-Planck equation results in the standard cooling
formula.  Specifically,

x
∂Ψ
∂t∫ dx = − x

∂Φ
∂x∫ dx

= −xmax Φ xmax( ) + Φ∫ dx
[11]

We define the rate of the decrease in emittance as

1
τ x

=
1

xΨdx∫
xmax Φ x max( )− Φ∫ dx[ ] [12]

where the first term in the brackets on the right hand side is the emittance decrease due to
particle loss and the second term is the cooling effect.

Substituting Equation [9] into Equation [12], assuming that the flux vanishes at xmax,
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Assuming that F, D1, and D2 are linear functions of x, we obtain
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which can be rewritten as

N
d x
dt

= F0 x N + D20 N + D10 x N [15]

or equivalently
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where
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The coefficients are given by
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where the ± is for the n±Q sidebands, the pickup to kicker phase advance is a2 times the
tune, and φk is the “bad” mixing between pickup and kicker.
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Summing [14] over 2W/f0 Schottky bands - assuming that G/d, M, etc. are constant

d x
dt

= W −4G + 4G 2 N M + U( )[ ] [20]

where

2U =
kBTN

p 2 [21]

Substitution of ′ G = 2GN  results in the standard form.



OPTIMUM GAIN CALCULATION

The optimum gain is determined by the condition that the LHS of Equation [14] is
a minimum.  We define a new gain ′ g = gs  and desire to find the value of s such that ′ g  is
the optimum gain.  We require F and D and their derivatives as functions of s
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