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Presntly, there are two most frequently used parameterezations of linear x-y coupled motion used in the 

accelerator physics. They are the Edwards-Teng and Mais-Ripken parameterizations. The article is devoted 
to an analysis of close relationship between the two representations, thus adding a clarity to their physical 
meaning. It also discusses the relationship between the eigen-vectors, the beta-functions, second order 
moments and  the bilinear form representing the particle ellipsoid in the 4D phase space. Then, it 
consideres a further development of Mais-Ripken parameteresation where the particle motion is descrabed 
by 10 parameters: four beta-functions, four alpha-functions and two betatron phase advances. In 
comparison with Edwards-Teng parameterization the chosen parametrization has an advantage that it works 
equally well for analysis of coupled betatron motion in circular accelerators and in transfer lines. 
Considered relationship between second order moments, eigen-vectors and beta-functions can be useful in 
interpreting tracking results and experimental data. As an example, the developed formalizm is applied to 
the FNAL electron cooler and Derbenev’s vertex-to-plane adapter. 

Introduction 

 In many applications analysis of coupled betatron motion is an important part of the 
machine design. The development of accelerator technology has stimulated additional 
interest in the subject in recent years. Initially betatron coupling was an undesired effect and 
efforts were made to suppress it. However, over recent years betatron coupling has become 
an intrinsic part of many accelerator proposals[1-4]. Although many studies of the coupled 
motion have been performed over the last 30 years[5-14], in our opinion there is still no 
representation of coupled betatron motion that would be as elegant as the Courant-Snyder 
parametrization[15] for the one-dimensional case. Presently, two different basic 
representations are most frequently used. The first one was proposed by Edwards and 
Teng[5,6] and the second one by Mais and Ripken[7,8]. This article follows the steps of the 
second representation, where we limit the number of independent parameters to ten to 
parameterize a 44 symplectic transfer matrix. They are the four beta-functions, the four 
alpha-functions and the two betatron phase advances. The beta-functions have similar 
meaning to the Courant-Snyder parametrization, and the definition of alpha-functions 
coincides with the standard one in regions with zero longitudinal magnetic field, where they 
are equal to negative half-derivatives of the beta-functions. The article also reveals a close 
correspondence between the proposed parametrization and the Edwards-Teng 
parametrization, thus adding more clarity to their physical meaning. 
 The first section is mainly based on references [6], [8] and [16]. They describe the 
equations of motion, the notation and the basics of the theory developed in the 50’s and the 
60’s. Section 2 sets relations between eigen-vectors, emittances and the particle 4D-ellipsoid 
in the phase space. Sections 35 develop the proposed representation and Section 6 shows 
its correspondence to the Edwards-Teng parametrization. 
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1. Equations of Motion and Condition of Symplecticity 

 The two-dimensional linear motion of a particle in a focusing lattice structure can be 
described by the following set of equations: 
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Here x and y are the horizontal and vertical particle displacements from the ideal orbit; the 
derivatives are calculated along the longitudinal coordinate s; PceBK xyyx /,,  ; PceGk / ; 

PceGN s / ; PceBR s / ; Bx , By and Bs are the corresponding components of the 

magnetic field; G is the normal component of the magnetic field gradient; and sG  is the 
skew component of the magnetic field gradient (a quad tilted by +45 deg around the s axis in 
the right-handed coordinate system).  

The Hamiltonian8 corresponding to Eq. (1.1) is  
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and the corresponding canonical momenta are 
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Rewriting Eq. (1.3) in matrix form we obtain the relation between the canonical, x̂ , and the 
geometric coordinates, x, 

Rxx ˆ    ,         (1.4) 
where  
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x x   and y y  . Here and below we put a cap above transfer matrices and vectors 

related to the canonical variables. 
 Introducing matrix H, 
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one can rewrite Eqs. (1.1) and (1.2) in the matrix form: 
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1 TH     ,        (1.8) 

where the unit symplectic matrix U is introduced as follows, 
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 For any two solutions of Eq. (1.7), )(ˆ 1 sx  and )(ˆ 2 sx , one can write that  
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and, consequently,  

constˆˆ 21 xUx T   .       (1.11) 
The above integral of motion is called the Lagrange invariant. Above in Eq. (1.10) the 
following properties of the unit symplectic matrix were employed: IUU T  and IUU  , 
where I is the identity matrix.   
 Let us introduce the transfer matrix from coordinate 0 to coordinate s, 0),0( xMx s , 

and the corresponding transfer matrix for the canonical variables, 0ˆ),0(ˆˆ xMx s . Using Eq. 
(1.4) one finds that the matrices are bound up as following  

1)0(),0()(),0(ˆ  RMRM sss  .     (1.12) 
Taking into account that the invariant of Eq. (1.11) does not change during motion, we can 
write that  

constˆ),0(ˆ),0(ˆˆˆˆ 2121  xMUMxxUx ss TTT    .    (1.13) 

As the above equation is satisfied for any 1x̂  and 2x̂  it yields  

UMUM ),0(ˆ),0(ˆ ss T   .      (1.14) 
Eq. (1.16) expresses the symplecticity condition for particle motion. It is equivalent[16] to 

n2=16 scalar equations, but taking into account that the matrix ),0(ˆ),0(ˆ ss T MUM  is 

antisymmetric, only six ((n2n)/2 = 6) of these equations are independent. Consequently, 
only 10 of 16 elements of the transfer matrix are independent. Thus, the symplecticity 
condition imposes more severe limitations than Liouville’s theorem, which imposes only one 
condition, det(M)=1, and leaves 15 independent parameters. 

 Consider a circular accelerator with the total transfer matrix M̂ . The transfer matrix has 
four eigen-values, i , and four corresponding eigen-vectors, iv̂ (i = 1, 2, 3, 4),  

iii vvM ˆˆˆ    .        (1.15) 

Below, we will consider the case of a stable betatron motion, meaning all four eigen-values 
are confined to a unit circle and none of them is equal to 1. For any two eigen-vectors the 
symplecticity condition of Eq. (1.14) yields the identity 
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which determines that the eigen-values always appear in two reciprocal pairs[8,16], and, 
consequently, the four eigen-values split into two complex conjugate pairs. We will denote 

them as 1, 
*

1 , 2 and *
2 , and the corresponding eigen-vectors as 1v̂ , *

1v̂ , 2v̂  and *
2v̂ , 

where * denotes the complex conjugate value.  
 From Eq. (1.16) we obtain the following set of orthogonality conditions: 
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where 
T*ˆˆ vv  . The values in the two top lines of Eq.(1.17) are purely imaginary, indeed: 

    vUvvUvvUvvUv ˆˆˆˆˆˆˆˆ
*      .    (1.18)  

Therefore we normalize the eigen-vectors as follows: 
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Other combinations can be obtained by applying the transposition and/or the complex 
conjugation to Eqs. (1.19). Similarly as for the transfer matrix elements, there are only six 
independent real scalar equations among Eqs (1.19). 

2. Relation between Eigen-vectors and Emittance Ellipsoid in 4D Phase Space 

 The turn-by-turn particle positions and angles (at the beginning of a lattice) can be 
represented as a linear combination of four independent solutions, 
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where four real parameters, A1, A2,1 and 2 , represent the betatron amplitudes and phases. 
The amplitudes remain constant in the course of betatron motion, while the phases change 
after each turn.  
 Let us introduce the following real matrix 





  2211 ˆ,ˆ,ˆ,ˆˆ vvvvV    .      (2.2) 

This allows one to rewrite Eq. (2.1) in the compact form 

AAξVx ˆˆ    ,        (2.3) 
where the amplitude matrix A is 
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 Applying the orthogonality conditions given by Eqs.(1.19), one can prove that matrix V̂  
is a symplectic matrix. It can be seen explicitly as follows:  
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Here we took into account that every matrix element in matrix VUV ˆˆ T  can be calculated 

using vector multiplication of Eqs. (1.19). Furthermore, the symplecticity of matrix V̂  yields 

the following useful expression for the inverse matrix, 1ˆ V : 

UVUV Tˆˆ 1      ,       (2.7) 
where we took into account that  UTU = I and UT = U, and I is the identity matrix. 
 Let us consider an ensemble of particles, whose motion (at the beginning of lattice) is 
contained in a 4D ellipsoid. A 3D surface of this ellipsoid is determined by particles with 
extreme betatron amplitudes. For any of these particles, Eq. (2.3) describes the 2D-subspace 
of single-particle motion, which is a subspace of the 3D surface of the ellipsoid, described by 
the bilinear form 

1ˆˆˆ xΞxT   .        (2.8) 
This ellipsoid confines the motion of all particles. To describe a 3D surface, in addition to 
parameters 1 and 2 of Eq. (2.5), we introduce the third parameter 3 so that the vector ξ  
would describe a 3D sphere with a unit radius, according to the equation 

  1, ξξ    ,        (2.9) 
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Then, we can rewrite Eq. (2.3) in the following form, 

,ˆˆ AξVx          (2.11) 
which describes a 3D subspace confining all particles of the beam. In other words we can 
consider that the amplitudes of the boundary particles are parameterized by 3 
(A1A1cos3, A2A2cos3.), so that we would obtain a 4D ellipsoid. 
 Expressing ξ  from Eq. (2.11) and substituting it into Eq. (2.9), one obtains the quadratic 
form describing a 4D ellipsoid containing all particles: 
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Comparing Eqs. (2.8) and (2.12) and using Eq. (2.7), one can express the bilinear form, Ξ̂ , 
as follows : 

TT UVΞVUΞ ˆˆˆˆ    ,      (2.13) 

where 11ˆ  AAΞ  is a diagonal matrix depending on two amplitudes A1 and A2, and we 
took into account that matrices 1A  and U commute. 
 To determine the beam emittance (volume of the occupied 4D phase-space) described by 
Eq. (2.8) we invert Eq. (2.13). That yields,  

VΞVΞ ˆˆˆˆ T   .       (2.14) 

As can be seen, a symplectic transform V̂  reduces matrix Ξ̂ to its diagonal form. Then, in 
the new coordinate frame the 3D ellipsoid enclosing the total 4D phase-space of the beam 
can be described by the following equation: 
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It is natural to define the beam emittance as a product of the ellipsoid axes (omitting the 
factor 2/2 correcting for the real 4D volume of the ellipsoid) so that 
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Calculation of the determinant using Eq. (2.14) yields, 
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Here we took into account that 1)ˆdet( V , which is a direct consequence of matrix V̂  
symplecticity. Thus, the squares of amplitudes A1 and A2 can be considered as 2D emittances 
1 and 2 corresponding to the eigen-vectors 1v̂  and 2v̂ . They coincide with the horizontal 
and vertical emittances of the uncoupled motion, and their product is equal to the total 4D 

emittance: 1 2 = 4D. Consequently, one can write matrix Ξ̂  as 
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 Similarly to the one-dimensional case the particle ellipsoid shape, described by matrix Ξ̂ , 
determines the beam emittances 1 and 2 , and the eigen-vectors 1v̂  and 2v̂ . In this case the 
beam emittances are reciprocal to the roots of the following characteristic equation, 

  0ˆdet  UΞ i        (2.19) 
One can prove the above using Eqs. (2.13) as follows: 
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Knowing the beam emittances and consequently Ξˆ , one can obtain from Eq. (2.13) a 

system of linear equations for matrix V̂ , 
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ΞVUUVΞ  ˆˆˆˆ        (2.21) 
Multiplying the above equation by lu , one obtains two equations for the eigen-vectors: 
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where l = 1, 2, and     
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We also took into account that ll vuV ˆˆ  , ll iuUu   and l
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 Taking into account Eq. (2.8) a Gaussian distribution function for coupled beam motion 
can be written in the following form: 
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Then, the second-order moments of the distribution function are 
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To carry out the integration one can perform a coordinate transform, xVy ˆˆˆ 1 , which 

reduces matrix Ξ̂  to its diagonal form. After simple calculation one obtains the matrix of the 
second-order moments 
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One can easily prove by direct substitution that matrix Σ̂  is the inverse of matrix Ξ̂ . 

Consequently, a symplectic transform UV̂  reduces matrix Σ̂  to its diagonal form. Applying 

a similar scheme as above for obtaining emittances and eigen-vectors from matrix Ξ̂ , one 

finds that the beam emittances 1 and 2 can be computed from matrix Σ̂  as roots of its 
characteristic equation, 

  0ˆdet  IUΣ i   l = l   ,    (2.27) 
while the equations for the eigen-vectors are  

  0ˆˆ  lli vIUΣ         (2.28) 
It also follows from Eq. (2.26) that the total beam emittance is equal to 

 Σ̂det214   D       (2.29) 

3. Beta-functions for Coupled Motion 
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 Employing the previously introduced notation, one can describe a single-particle phase-
space trajectory along the beam orbit as  
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)(2 sie   are introduced to bring the eigen-vectors to the following standard form:  
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so that 1(s) and 2(s) would be the phase advances of betatron motion. Here 1x(s), 1y(s), 
2x(s) and 2y(s) are the beta-functions; 1x(s), 1y(s), 2x(s) and 2y(s) are the alpha-functions 
which, as will be shown in the next section, coincide with the beta-functions’ negative half-
derivatives at regions with zero longitudinal magnetic field; and six real functions u1(s), u2(s), 
u3(s), u4(s), 1(s) and 2(s) are determined by the orthogonality conditions of Eq.(1.19). Below 
we will be omitting their dependence on s where it does not cause an ambiguity. Two eigen-
vectors  ˆ 1v and  ˆ 2v were chosen out of two pairs of complex conjugate eigen-vectors by 
selecting u1 and u4 to be positive. 
 The first orthogonality condition of Eqs. (1.19),  

    iuui 22ˆˆ 2111  vUv   ,       (3.3) 

yields u1 = 1 u2 , and similarly for the second eigen-vector, u4 = 1 u3. The next two 

equations, 0ˆˆ 11 vUv T  and 0ˆˆ 22 vUv T , are identities.  
 Taking into account the above relations for u1 and u4, the remaining two non-trivial 
orthogonality conditions can be written as follows,       
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Multiplying both terms in Eq.(3.4) and Eq.(3.5) by their complex conjugate values one 
obtains 
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Subtracting Eqs. (3.6) yields u2=u3. Substituting u2=u3=u into the first equation of Eqs. (3.6) 
one obtains the following expression for u: 
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By definition uk (k = 1,… 4) are real functions1 and u1 and u4 are positive. That sets a 
constraint for possible values of beta- and alpha-functions, 
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and a constraint on a value of u, u    1. 
 Knowing u makes it easy to find 1+2 and 12 from Eqs. (3.4) and (3.5): 
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and, consequently 1 and 2: 
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Here n and m are arbitrary integers. Eq. (3.10) results in that  and + are determined 
modulo 2 which, consequently, yields that 1 and 2 are determined modulo  (see Eq. 
(3.11)) resulting in additional solutions. Actually there are only two independent solutions. 
The first one corresponds to the case when both n and m have the same parity, which is 
equivalent to m+n = m-n = 0. The second one corresponds to different parity of m and n, 

                                                 
1 Eq. (3.8) also demonstrates that if beta- and alpha-functions are not correctly chosen, so that the value of 
the discriminant is negative, u becomes imaginary, thus redetermining the alpha-functions. 
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which is equivalent to m+n = m-n = . Thus, in a general case, one has four independent 
solutions for u, 1 and 2 set by symplecticity conditions. 
 Below we will call thirteen functions, 1x, 1y, 2x, 2y, 1x, 1y, 2x, 2y, u, 1, 2, 1 and  2 
the generalized Twiss functions. Only 10 of them are independent. Other can be determined 
from the symplecticity conditions. Although for known eigen-vectors the Twiss parameters 
can be determined uniquely it is not the case if we know only beta-functions. In this case an 
application of symplecticity conditions leaves four independent solutions for the eigen-
vectors. Two of them are related to the sign choice for u in Eq. (3.8), and other two (for 
each choice of u) are related to uncertainty of 1 and 2 in Eq. (3.11). The later is related to 
the fact that the mirror reflection with respect to the x or y axis does not change ’s and ’s 
but changes the relative signs for the x and y components of the eigen-vectors2, with 
subsequent change of 1 and 2 by . It is opposite to the case Edwards-Teng 
parameterization (see Section 6), where knowing eigen-vectors does not yield unique 
solution for the Twiss parameters but knowing Twiss parameters uniquely determines eigen-
vectors.  
 Finally, we can express the eigen-vectors 1v̂  and 2v̂  in the following form: 
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That yields the following expression for matrix V̂  (see Eq.(2.2)) 
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Here 1 and 2 and u are determined by the beta- and alpha-functions from Eqs. (3.8), (3.10) 
and (3.11).  
 In the case of weak coupling one should normally choose 1v̂  as the eigen-vector, which 

mainly relates to the horizontal motion, and 2v̂  to the vertical motion. In the case of strong 
coupling the choice is arbitrary. As can be seen from Eq. (3.12), in determining beta- and 
alpha-functions, swapping two eigen-vectors causes the following redefinitions:  1x2x , 
1y2y , 1x2x , 1y2y , u1u ,  1  2  and 2 1. One can verify that Eqs. 
(3.8) and (3.10) satisfy the above transformations for u, 1 and 2 . 
                                                 
2 It can also be achieved by change of the coupling sign (simultaneous sign change for gradients of all skew 
quads and magnetic fields of all solenoids), which does not change the beta-functions but does change the 
-functions by . 
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 To find the beam sizes one needs to remember that the amplitudes of beam motion 
related to the corresponding eigen-vectors are governed by Eqs. (2.11) and (2.10). Applying 
Eqs. (2.11), (3.1) and (3.12) one can parametrize the coordinates of the 4D ellipsoid interior: 

 21
32231321 sinˆcosˆRe),,(ˆ   ii ee   vvx 1   .       (3.14) 

The beam sizes (projections of 4D ellipsoid to the horizontal and vertical directions) are 
determined by the maximum of x and y variations in Eq.(3.13) and are equal to 

.

,

2211

2211

yyy

xxx

a

a








        (3.15) 

Let us to write the equation describing the beam ellipsoid in the x-y plane (the projection of 
the 4D-ellipsiod to the x-y plane) in the following form, 

2
2

2

2

2
~1

~2 


yyxx a

y

aa

xy

a

x
   ,      (3.16) 

one can find the parameter ~  by determining at which x coordinate the y coordinate in Eq. 
(3.14) reaches the maximum. Comparing this result with the result following from Eq. (3.16) 
one obtains[8]: 

yyxx

yxyx

22112211

22221111 coscos~








    .          (3.17) 

Comparing Eqs. (3.15) and (3.17) to the second order moments presented in Appendix A 
one can see that the above beam sizes coincide with the rms beam sizes of the Gaussian 

distribution, and the parameter ~  can be also expressed as following 22~ yxxy .  

4. Derivatives of the Tunes and Beta-Functions 

 Let us consider the relations between the beta- and alpha-functions. A differential 
trajectory displacement related to the first eigen-vector can be expressed as follows: 
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Alternatively, one can express particle position through the beta-functions at the new 
coordinate s + ds: 
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Comparing both the imaginary and real parts of Eqs. (4.1) and (4.2) one obtains: 
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Similarly, one can write down equivalent expressions for the vertical displacement, 
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which yields:  

.sin
2

,cos2

1
1

1

1

11

1111
1











y

x

y

yxy
y

Ru

ds

d

ds

d

R
ds

d





      (4.6) 

Similar calculations carried out for the second eigen-vector yield, 
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     (4.7) 

 One can see that in the absence of longitudinal magnetic field the derivatives of the phase 
advances d1/ds and d2/ds are proportional to (1-u) and are positive. That explains the 
selection rule for the eigen-vectors formulated at the beginning of Section 3 which requires 
u1 and u4 being positive (u1 = u4 = 1 – u   0). Note that there is no a formal requirement for 
d(1+1)/ds and d(2+2)/ds being also positive and therefore u can be negative, while our 
already wide experience says that in the most of practical cases it belongs to the [0,1] interval. 
 The relative contributions of x and y parts in the eigen-vector normalization equation, 

2,1,2ˆˆ  lill vUv , are proportional to u or 1-u. Therefore parameter u can be considered 
as a coupling strength. In the absence of coupling the parameter u is equal to 0 (or 1 if x and 
y vectors are swapped). Nevertheless, in the general case, an equality u = 0 does not mean an 
absence of coupling. As one can see from Eqs. (3.8) and (3.10) the condition u = 0 requires 
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Ax=Ay , and yields    yxxx
i iAiAe    and    yyxx

i iAiAe   .  These 

equations do not require auxiliary beta-functions 1y and 2x to be equal to zero, and, 
consequently, the condition u = 0 does not automatically mean absence of coupling. 
Although strictly speaking u cannot be considered as a coupling parameter it reflects strength 
of the coupling and is a good value to characterize it in practice. In particular u = ½ 
corresponds to 100% coupling when the motion for both eigen-vectors is equally distributed 
in both planes (see an example in Appendix B). It is also useful to note that u does not 
change in a transfer line without coupling. Actually, in the absence of coupling the x and y 
parts of the eigen-vector, xv̂  and yv̂ , are independent and their normalization, 

 uuyxyx  1,ˆˆ ,2, vUv , does not change because the determinants of the corresponding 

22 transfer matrices are equal to 1. Here U2 is the 2D unit symplectic matrix.  

5. Representation of Transfer Matrix in Terms of Generalized Twiss Functions 

 One can derive a useful representation of the transfer matrix ),(ˆˆ
212,1 ssMM   between 

two points of a transfer line in terms of the generalized Twiss functions. Using the 

definitions of eigen-vector and matrix V̂  (see Eqs.(3.1) and Eq.(2.2))  one can derive the 
following identity 

1122
ˆˆˆ   VMSV      .        (5.1) 

Here 1V̂  and 2V̂ are the V̂  matrices given by Eq. (3.13) for the initial and final points. The 
matrix S is  
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S     ,   (5.2) 

where 1,2 are the betatron phase advances between points 1 and 2. Multiplying both sides 

of Eq.(5.2) by the inverse matrix, UVUV T
1

1
1

ˆˆ  , as given by Eq.(2.7), allows one to 

express the transfer matrix, 12M̂ , in the form 

UVSUVM T
1212

ˆˆˆ         .       (5.3) 

 In the case of the one-turn transfer matrix M̂  the matrices 1V̂  and 2V̂  are equal and Eq. 

(5.3) simplifies. Explicit expressions of matrix M̂  as well as matrices Ξ̂  and Σ̂  are presented 
in Appendix A. 

6. Edwards-Teng Parametrization 

 The Edwards-Teng parametrization[6] is based on a canonical transform R
~

 which reduces 
a 44 transfer matrix,  











Qq

pP
M̂    ,      (6.1) 

to its normal modes form  
1~ˆ~~  RMRM    ,      (6.2) 

where  
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B0

0A
M
~

   ,      (6.3) 

and P, p, Q, q, A and B are 22 matrices. Teng suggested parametrizing a symplectic matrix 

R
~

 as follows: 








 







cossin

sincos~ 1

ED

DE
R    ,      (6.4) 

where E is the unit 22 matrix, and D is a 22 symplectic matrix, 











dc

ba
D    ,        (6.5) 

so that 1 bcad . Thus, matrix R
~

 is parametrized by four parameters: a, b, c and . Matrix 

M
~

 describes the particle motion in new coordinates and can be parametrized by six Twiss 

parameters. Finally, one obtains ten parameters to fully describe the transfer matrix M̂ . The 
six Twiss parameters 1, 1, 1, 2, 2, and 2 are so called the Twiss parameters of the 
decoupled motion. Edwards and Teng expressed them through the transfer matrix elements.  
 In the course of this section we will express them through the eigen-vectors. As will be 
seen below, this procedure reveals the close relation of the two representations and sheds 
additional light on the physical meaning of both parameter sets. 

 Expressing matrix M̂  through M
~

 in Eq. (6.2) and substituting the result into Eq. (1.15), 
one obtains 

 iii vvRMR ˆˆ
~~~ 1     .       (6.6) 

Eq. (6.6) can be rewritten as 

iii vvM ~~~     ,        (6.7) 
where the vector  

ii vRv ˆ
~~          (6.8) 

is the eigen-vector of matrix M
~

. To determine matrix )(
~~

sRR   we take into account that 

vectors iv~  represent decoupled motion; i.e., the vector elements corresponding to another 

plane are equal to zero. Using the definitions of ivR ˆ,
~

 and expressing iv~ through the Twiss 
parameters of the decoupled motion, one can rewrite Eqs. (6.8) in the form: 
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  .    (6.9b) 

Eqs. (6.9) represent eight scalar equations and they allow one to determine the parameters of 

matrix R
~

 as well as the beta- and alpha-functions of the decoupled motion. Using the last 
two equations in Eq. (6.9a) and the first two equations in Eq. (6.9b), we obtain the following 

equations for matrix R
~

 parameters:  
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        (6.10) 

Here the following notation was introduced: tanaat  , tanbbt  , tancct   and 

tanddt  .  Taking into account that at , bt , ct  and dt  are real parameters, one can separate 
the real and imaginary parts in Eq. (6.10). That yields the following four solutions:  
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and four useful identities 
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The identities can be directly derived from the symplecticity of matrix V̂ . Using Eq.(2.6) 

one immediately obtains that IUVUV Tˆˆ . Using the explicit definition of the matrix V̂ of 
Eq.(3.13) and performing matrix multiplication, after some algebra, one obtains these 
identities in the off-diagonal 22 block of the resulting matrix.  
 Using matrix D symplecticity and Eqs.(6.11), after simple algebra one obtains 

u

u
cbda tttt 


1
tan 2      .      (6.13) 

That finally yields:  

usin     .        (6.14) 
 Now using the two first equations in Eq. (6.9a) and the two last equations in Eq. (6.9b), 
one obtains equations for the beta- and alpha-functions of the decoupled motion:  
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After lengthy calculation employing identities (6.12), one finally reduces the above equations 
to the simple form: 
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          (6.16) 

As can be seen, although Eq. (6.14) yields four different values for angle , other elements of 

matrix R
~

 and the beta- and alpha-functions of the decoupled motion are uniquely related to 
the generalized Twiss parameters.  
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 The betatron motion in the normal modes representation can be written in the following 
form  

)0(~),0(
~

)(~ xMx ss     ,        (6.17) 
where  

)0(
~

),0(ˆ)(
~

),0(
~ 1 RMRM sss .       (6.18) 

Edwards and Teng determined the phase advance of the betatron motion using a standard 
recipe for the decoupled motion: 

)0(~),0(
~

)(~ )(
i

si
i ses i vMv      .      (6.19) 

Using the definition of matrix ),0(
~

sM  of Eq. (6.18), we can rewrite Eq. (6.19) as 

)0(ˆ),0(ˆ)0(ˆ)0(
~

),0(
~

)(
~

)(ˆ 1)(
ii

si
i ssses i vMvRMRv       .   (6.20) 

As can be seen, the obtained equation coincides with the definition of betatron phase 
advance of Section 4 (see Eq. (3.1) and below), thus proving that the betatron phase 
advances for both parametrizations are the same.   

Discussion 

 This article introduces further development of the coupled betatron motion 
representation introduced in Refs. [6] and [7]. Our approach is based on a parametrization of 
the 44 symplectic transfer matrix by introducing ten functions: four beta-functions, four 
alpha-functions and two betatron phase advances, which we call the generalized Twiss 
functions. The beta-functions have similar meaning to the Courant-Snyder parametrization, 
and the definition of alpha-functions coincides with the definition for uncoupled motion at 
regions with zero longitudinal magnetic field, where they are equal to negative half-
derivatives of the beta-functions. The approach is based on the parametrization of 
normalized eigen-vectors. Knowing the eigen-vectors, one can easily obtain the generalized 
betatron functions employing Eq.(3.2). Eqs. (3.2), (3.8) and (3.10) allow one to perform the 
inverse operation of finding eigen-vectors from the generalized Twiss parameters. A useful 
representation of a transfer matrix in terms of the generalized Twiss functions is also 
introduced in Section 5.  
 A definition of 4D emittance is introduced for an ensemble of particles, whose motion is 
contained in a 4D ellipsoid. A 3D surface of this ellipsoid is determined by particles with 

extreme betatron amplitudes. Eqs. (2.8) and (A.2) determine the bilinear form Ξ̂  describing 
this beam boundary. Consequently, the beam density distribution function can be written as  

)1ˆˆˆδ(),,,(  xΞxT
yx Apypxf   ,       

in the case of KV-distribution, and as  











2

ˆˆˆ
exp),,,(

xΞxT

yx Apypxf   ,       

in the case of Gaussian distribution. The chosen normalization of the eigen-vectors, Eqs. 
(1.19), yields a simple relation between the beam emittances related to the eigen-vectors and 

total 4D emittance, 214  D . Knowing the bilinear form Ξ̂  or the matrix of second-order 

moments jiij xx ˆˆ , one can compute corresponding beam emittances, eigen-vectors and, 

consequently, generalized Twiss functions using Eqs. (2.19), (2.22) or Eqs. (2.27), (2.28). 
 A comparison of the developed parametrization with the Edwards-Teng parametrization 
provided additional insight for both parametrizations. First, it proved that the betatron 
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motion phase advances for both parametrizations are equal; i.e,. the betatron phase advance 
for the Edwards-Teng representation is directly related to particle oscillations in the x or y 
plane, depending on which plane a particular eigen-vector is referenced to. Second, 
Edwards-Teng beta- and alpha-functions are simply related to the corresponding generalized 
beta- and alpha-functions:    uu ixiixi  1,1  , where u is the coupling 

parameter directly related to the angle of Teng’s rotation, u2sin . 
 Unlike the Edwards-Teng parameterization the Mais-Ripken parameterization (as well as 
the parameterization developed in this article) allows one to obtain the unique solution for 
the generalized Twiss parameters from the known ring transfer matrix or the eigen-vectors. 
There are two linearly independent solutions in the case of Edwards-Teng parameterization. 
On the contrary, if one needs to determine the transfer matrix from the 10 Twiss parameters 
the Edwards-Teng parameterization yields the unique solution, while the parameterization 
developed in this article yields four solutions.  To choose a unique solution one additionally 
needs to know which of two choices for u and 1 (or 2) needs to be taken (see discussion 
after Eq. (3.11)). 
 The presented parametrization has been proven useful for both analytic and numerical 
analysis of coupled betatron motion in circular machines and transfer lines. Although we 
considered only xy-coupled motion in the article we would like to note that all results 
obtained in Section 2 are also applicable to three-dimensional particle motion. It is important 
to note that although the canonical coordinates were used throughout the article, this issue 
usually does not create complications in practical applications of the developed formalism 
because the canonical and geometric coordinates coincide at regions with zero longitudinal 
magnetic field. For example, the software developed by one of the authors for coupled-
motion analysis always uses transfer matrices which start and end at points with zero 
longitudinal magnetic field, and thus, the canonical and geometric coordinates always 
coincide. Appendix B shows an example of analysis of how the strongly coupled motion for 
the Fermilab electron cooling project has been analyzed with the developed formalism. 
 The authors are grateful to Y. Chao, G. Krafft, L. Harwood, S. Corneliussen and A. Burov for careful 
reading of the manuscript and useful suggestions for improving its clarity. 

 

Appendix A. Explicit Expressions for Transfer Matrix, Bilinear Form and Matrix of 
Second Order Moments 

 Performing matrix multiplication in Eq.(5.4) allows one to express transfer matrix 
elements through the generalized Twiss functions: 

  22211111 sincossincos1ˆ  xx uuM    ,    (A.1.1) 
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           22222
2

2
11111

1

1
13 cos1sincossinˆ 








 uuM y
y

x
y

y

x   , (A.1.3) 

   2222111114 sinsinˆ   yxyxM   ,     (A.1.4) 

 
2

2

2
2

2

1
1

2
1

2

21 sinsin
1ˆ 









x

x

x

x uu
M





   ,     (A.1.5) 

  22112122 sinsincoscos1ˆ  xxuuM    ,    (A.1.6) 



 19

         

         
,

sin1cos1

sin1cos1ˆ

22

22222222

11

11111111
23

yx

yxxy

yx

yxxy

uuuu

uuuu
M
















   (A.1.7) 

           22222
2

2
11111

1

1
24 sincossincos1ˆ 








 x
x

y
x

x

y uuM   ,  (A.1.8) 

           22222
2

2
11111

1

1
31 cossincos1sinˆ 








 uuM x
x

y
x

x

y   ,  (A.1.9) 

   2222111132 sinsinˆ   yxyxM     ,                 (A.1.10) 

  11222133 sinsincos1cosˆ  yyuuM    ,              (A.1.11) 

221134 sinsinˆ  yyM    ,                (A.1.12) 

         

         
,

sin1cos1

sin1cos1ˆ

22

22222222

11

11111111
41

yx

yxyx

yx

yxyx

uuuu

uuuu
M
















              (A.1.13) 

         22222
2

2
11111

1

1
42 sincos1)(sincosˆ 








 y
y

x
y

y

x uuM   ,    (A.1.14) 

 
2

2

2
2

2

1
1

2
1

2

43 sin
1

sinˆ 








y

y

y

y uu
M





   ,             (A.1.15) 

  22112144 sinsincos1cosˆ  yyuuM    .           (A.1.16) 

 Similarly, using Eq. (2.13), one can express elements of the bilinear form describing the 
particle ellipsoid in 4D space: 
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 Finally, using Eq. (2.26), one can express elements of the second-order moments: 
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Appendix B. Generalized Twiss Functions for Axisymmetric Distribution Function  

 To increase Tevatron luminosity, Fermilab developed a high-energy electron cooling 
device for the cooling of antiprotons[2]. Because of the high energy of the electron beam (~5 
MeV), it is impractical to use the standard choice used in electron cooling devices for beam 
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transport where the beam moves in the longitudinal magnetic field the entire way from the 
electron gun to the collector. Nevertheless the longitudinal magnetic field is still used for 
beam focusing in the cooling section to cancel the beam defocusing due to the electron 
beam space charge, and more importantly to prevent collective instability in the electron 
beam. To neutralize the rotational motion of particles in the cooling section, the beam is 
produced in the electron gun immersed in the longitudinal magnetic field. Consequently, the 
beam transport is quite sophisticated, with a large number of bends and focusing elements. 
Taking into account that the space-charge effects are comparatively small everywhere except 
the gun and the collector, the developed formalism has been used for analysis of the main 
part of beam transport. In this section we consider how to find the generalized Twiss 
parameters and the mode emittances at the beginning of transport line. 
 At the exit of the electrostatic accelerator the electron beam distribution is axially 
symmetric, and before the beam leaves the magnetic field its distribution function is 
uncoupled and can be described by the bilinear form 
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where 0/ PmkTr ccT   is the thermal emittance of the beam, rc is the cathode radius, Tc is 

the cathode temperature, P0 and m are the particle momentum and mass,  Ta  /2
0  , 

 dsdaT //00    and   0
2

00 1    are the initial Twiss functions, and a is the 

beam radius at the electrostatic accelerator exit. We imply here that a and rc can be different 
due to adiabatic beam expansion in the solenoid. Consequently, magnetic fields at the 
cathode and the solenoid exit are related: Bc rc 

2= B a2.  After exiting from the magnetic field 
an electron acquires the angular momentum proportional to its radius, and the distribution 
can be characterized by the bilinear form: 





























000

00
2

00

000

000
2

0

0

0

0

0

1







T
B

T
in ΦΞΦΞ  , (B.2) 

where  
























100

0100

010

0001

Φ  ,      (B.3) 

cPeB 02/  is the rotational focusing strength of the solenoid edge, and B is the magnetic 
field at solenoid exit.  
 To choose initial values for generalized Twiss functions3 we use the axial symmetry of the 

                                                 
3 We could use Eqs. (2.19) and (2.22) for computing the emittances and eigen-vectors and, consequently, 
the generalized Twiss functions, but it would require significantly more complicated calculations than for 
the procedure described below . 



 22

electron distribution function. This implies that the horizontal and vertical alpha- and beta-
functions are equal and u=1/2. Thus, we obtain for the eigen-vectors: 
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In this case the coefficients of Eq. (3.7) are 
 x = y =1  and  Ax=Ay=0  ,       (B.5) 

which creates uncertainty in Eqs. (3.8) and (3.10) for u, 1 and 2. To avoid this uncertainty 
we will use primarily Eqs. (3.4) and (3.5). Substituting Eqs.(B.4) into Eq.(3.4) yields  

021   ii ee    ,       (B.6) 
while for Eq.(3.5) it yields an identity. The solution of Eq.(B.6) is  1 =  2 + 2n + 1/2) . 
As one can see there are an unlimited number of solutions for 1 and 2. We will choose a 

solution reflecting the eigen-vectors symmetry: 2/21   . Then, the matrix V̂ is equal 
to: 
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Using Eq. (2.13) (compare also with Eqs. (A.2)) we obtain the bilinear form, 
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Comparing Eqs. (B.2) and (B.8), one can express generalized Twiss functions through the 
Twiss parameters of the beam distribution function in the magnetic field: 
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One can see that 2
21 T  , which verifies the conclusions of Section 2. The last two 

equations demonstrate that after exiting the magnetic field the beam distribution is 
characterized by two quite different emittances. In the case of FNAL cooler 0 >>1 
resulting one emittance to be much larger another one. The first emittance is determined by 
the angular momentum excited by the solenoid edge field, 1 = eBc rc

2/(P0c) and grows with 
the field. While the second emittance is determined by the cathode temperature, 1 = mkTcc 
/(eBcP0), and decreases with field increase. 
 The developed formalism presents also a simple way to describe the vertex-to-plane 
transform suggested by Derbenev[1]. As it was presented above, the eigen-vectors of Eq.(B.4) 
represent the vertex distribution function for 1 = 2 = /2, while for 1 =0 and 2 =  they 
correspond to the uncoupled motion, in which x and y coordinates were rotated by /4. The 
transform from one to another set of the eigen-vectors can be performed with a matrix 
representing a decoupled motion with betatron phase advances for the x and y planes 
different by /2. In the case if unequal emittances 1 and 2 the initially axial-symmetric 
beam is transformed to an elliptic beam tilted by /4. If the focusing system is rotated by 
/4, the final elliptical beam is also rotated by the same angle due to the axial symmetry of 
the initial distribution. The final beam has an uncoupled distribution function with the 
emittances 1 and 2 corresponding to the vertical and horizontal emittances.  

References 

1. Ya. Derbenev, University of Michigan, UM HE 93-20 (1993); UM HE 98-04 (1998). 
2. S. Nagaitsev et al., NIM-A, Vol. 441, p. 241 (2000). 
3. R. Talman, Phys. Rev. Lett. 74, 1590 (1995). 
4. R.C. Fernow et al. Proceedings of Beam Dynamics and Technology Issues for Muon Collider, AIP 

372, pp. 146-158 (1995). 
5. L.C. Teng, Fermilab, FN-229 0100 (1971). 
6. D.A. Edwards and L.C. Teng, IEEE Trans. Nucl. Sci. 20, 3, pp. 885-889 (1973). 
7. I. Borchardt, E. Karantzoulis, H. Mais, G. Ripken,  DESY 87-161. 
8. F. Willeke, G. Ripken, Methods of Beam Optics, Proceedings of US Particle Accelerator School 

(1987 and 1988), AIP Conf. Proc. 184, New York 1989. 
9. K. Brown and R. Servanckx, Particle Accelerators 36, pp. 121-140 (1991). 
10.  T. Barklow et al. SLAC-PUB-5056 (1989) and SLAC-PUB-5695 (1991)  
11.  G. Parzen, Brookhaven National Laboratory, Acc-Phys, 9510006 (1995).  
12.  M. Billing, Cornell University, CBN 85-2 (1985).  
13.  D. Sagan and D. Rubin, Phys. Rev. Special Topics - Accelerators and Beams 2, 074001, pp. 1-5 

(1999).  
14.  L.Michelotti, et el. Proceedings of the 1995 Particle Accelerator Conference, p.455(1995). 
15. E.D Courant and H.S. Snyder, Annals of  Physics (Paris) 3(1), pp. 1-48 (1958).  
16. A. A. Kolomensky and A.N. Lebedev, Theory of Circular Accelerators, Moscow, 1962.  
 


