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Presntly, there are two most frequently used parameterezations of linear x-y coupled motion used in the
accelerator physics. They are the Edwards-Teng and Mais-Ripken parameterizations. The article is devoted
to an analysis of close relationship between the two representations, thus adding a clarity to their physical
meaning. It also discusses the relationship between the eigen-vectors, the beta-functions, second order
moments and the bilinear form representing the particle ellipsoid in the 4D phase space. Then, it
consideres a further development of Mais-Ripken parameteresation where the particle motion is descrabed
by 10 parameters: four beta-functions, four alpha-functions and two betatron phase advances. In
comparison with Edwards-Teng parameterization the chosen parametrization has an advantage that it works
equally well for analysis of coupled betatron motion in circular accelerators and in transfer lines.
Considered relationship between second order moments, eigen-vectors and beta-functions can be useful in
interpreting tracking results and experimental data. As an example, the developed formalizm is applied to
the FNAL electron cooler and Derbenev’s vertex-to-plane adapter.

Introduction

In many applications analysis of coupled betatron motion is an important part of the
machine design. The development of accelerator technology has stimulated additional
interest in the subject in recent years. Initially betatron coupling was an undesired effect and
efforts were made to suppress it. However, over recent years betatron coupling has become
an intrinsic part of many accelerator proposals! . Although many studies of the coupled
motion have been performed over the last 30 years® ', in our opinion there is still no
representation of coupled betatron motion that would be as elegant as the Courant-Snyder
parametrization™  for the one-dimensional case. Presently, two different basic
representations are most frequently used. The first one was proposed by Edwards and
Teng™ and the second one by Mais and Ripken!™". This article follows the steps of the
second representation, where we limit the number of independent parameters to ten to
parameterize a 4x4 symplectic transfer matrix. They are the four beta-functions, the four
alpha-functions and the two betatron phase advances. The beta-functions have similar
meaning to the Courant-Snyder parametrization, and the definition of alpha-functions
coincides with the standard one in regions with zero longitudinal magnetic field, where they
are equal to negative half-derivatives of the beta-functions. The article also reveals a close
correspondence between the proposed parametrization and the Edwards-Teng
parametrization, thus adding more clarity to their physical meaning.

The first section is mainly based on references [6], [8] and [16]. They describe the
equations of motion, the notation and the basics of the theory developed in the 50’s and the
60’s. Section 2 sets relations between eigen-vectors, emittances and the particle 4D-ellipsoid
in the phase space. Sections 3—5 develop the proposed representation and Section 6 shows
its correspondence to the Edwards-Teng parametrization.
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1. Equations of Motion and Condition of Symplecticity

The two-dimensional linear motion of a particle in a focusing lattice structure can be
described by the following set of equations:

(K2 +k)x+(N—lR'jy—Ry' -0,
2 (1.1)
y"+(Ky2 —k)y+(N+%R’jx+Rx' =0
Here x and y are the horizontal and vertical particle displacements from the ideal orbit; the
derivatives are calculated along the longitudinal coordinate 5; K, , =eB | /Pc; k=eG/Pc;
N =eG,/Pc; R=eB /Pc; B,, B, and B, are the corresponding components of the

magnetic field; G is the normal component of the magnetic field gradient; and G, is the

skew component of the magnetic field gradient (a quad tilted by +45 deg around the s axis in
the right-handed coordinate system).
The Hamiltonian® corresponding to Eq. (1.1) is

2 2
p. +p 2 R\ x° 2 Ry R
H="—2 4| K +k+— |—+|K —k+—|—+Nxy+— —X , (1.2
5 [ 4)2 [y 1 |3 yz(ypx py) (1.2)

and the corresponding canonical momenta are

. R
P.=x =7y
* 2
R (1.3)
py:y'+3x

Rewrtiting Eq. (1.3) in matrix form we obtain the relation between the canonical, X, and the
geometric coordinates, X,

£=Rx (1.4)
where
X X 1 0 0 0
12 0 I —-R/2 0
g=| , x=| | , R= / , (1.5)
Y Yy 0 0 1 0
P, 0, R/2 0 0 1

6. =x" and 6, =y'. Here and below we put a cap above transfer matrices and vectors

related to the canonical variables.
Introducing matrix H,

! o _
Kj+k+T 0 N ~R/2
H- 0 I R/2 o 0 1 (1.6)
N R/2 1<y2—k+T 0
~R/2 0 0 1]

one can rewrite Egs. (1.1) and (1.2) in the matrix form:



%

—=UHx , (1.7)
ds
H= %QTHﬁ , (1.8)
where the unit symplectic matrix U is introduced as follows,
0 1 0 O
-1 0 0 O
U= . (1.9)
0 0 0 1
0 0 -1 0
For any two solutions of Eq. (1.7), X,(s) and X, (s), one can write that
d(ATA)dﬁITA R A S
Z x, Ux, =?UX2 +X, UX= x, H'U Ux, +x, UUHx, =0 , (1.10)

and, consequently,
%,"Ux, = const . (1.11)
The above integral of motion is called the Lagrange invariant. Above in Eq. (1.10) the

following properties of the unit symplectic matrix were employed: U"U =1 and UU = -1,
where I is the identity matrix.

Let us introduce the transfer matrix from coordinate 0 to coordinate 5, X = M(0,s)X,,

and the corresponding transfer matrix for the canonical variables, X = M(0, §)X, . Using Eq.
(1.4) one finds that the matrices are bound up as following

M(0,s) = R(s)M(0,s)R(0)™" . (1.12)
Taking into account that the invariant of Eq. (1.11) does not change during motion, we can
write that

%,/ U, = %,"M(0,5)" UM(0,5)X, = const . (1.13)
As the above equation is satisfied for any X, and X, it yields
M(0,s5)" UM(0,5)=U . (1.14)

Eq. (1.16) expresses the symplecticity condition for particle motion. It is equivalent' to
#’=16 scalar equations, but taking into account that the matrix M(O,S)TUM(O,S) is

antisymmetric, only six ((#"—n)/2 = 6) of these equations are independent. Consequently,
only 10 of 16 elements of the transfer matrix are independent. Thus, the symplecticity
condition imposes more severe limitations than Liouville’s theorem, which imposes only one
condition, det(M)=1, and leaves 15 independent parameters.

Consider a circular accelerator with the total transfer matrix M. The transfer matrix has
four eigen-values, A, and four corresponding eigen-vectors, V, (1 =1, 2, 3, 4),

MV, = AV, . (1.15)
Below, we will consider the case of a stable betatron motion, meaning all four eigen-values

are confined to a unit circle and none of them is equal to 1. For any two eigen-vectors the
symplecticity condition of Eq. (1.14) yields the identity

0=2,%, UM%, - 2,9, )= (M3, ] UNIY, = 2.9 TUAY, =(1-2,4 8 "U%, . (1.16)



which determines that the eigen-values always appear in two reciprocal pairs™'‘, and,

consequently, the four eigen-values split into two complex conjugate pairs. We will denote

* * . . A o * ~ A
them as A, 4, , A, and 4, , and the corresponding eigen-vectors as V,, v, , v, and V,

b

where ~ denotes the complex conjugate value.
From Eq. (1.16) we obtain the following set of orthogonality conditions:

v, Uv, 20,
Vv, Uv, 20,
T (1.17)
v, Uy, = 0,
v, Uv, =0 ifi#],
where ¥* =¥"" . The values in the two top lines of Eq.(1.17) are purely imaginary, indeed:
(FU9) = (U8 =9 U == Uv (1.18)
Therefore we normalize the eigen-vectors as follows:
VUV, =-2i Vv, UV, =-2i
v, Juv, =0 , v,/ UV, =0 (1.19)
v,/ 0%, =0 , v,09,=0

Other combinations can be obtained by applying the transposition and/or the complex
conjugation to Eqs. (1.19). Similarly as for the transfer matrix elements, there are only six
independent real scalar equations among Eqs (1.19).

2. Relation between Eigen-vectors and Emittance Ellipsoid in 4D Phase Space

The turn-by-turn particle positions and angles (at the beginning of a lattice) can be
represented as a linear combination of four independent solutions,

X= Re(Ale‘”’" V, +de™ 02)
’ "o ' "o (21)
= Al(v1 cosy, +V, sin 1,//1)+ Az(v2 cosy, +V, sin %) ,

where four real parameters, A4, A, y; and v, , represent the betatron amplitudes and phases.
The amplitudes remain constant in the course of betatron motion, while the phases change
after each turn.

Let us introduce the following real matrix

V= [01',—01",02',—02"} . 2.2)
This allows one to rewrite Eq. (2.1) in the compact form
X =VAE, | (2.3)
where the amplitude matrix A is
4 0 0 0
0 4 0 O
A= , 24
0 0 4, O
0 0 0 4,

and



cosy,
—siny,

L= . (2.5)
cosy,

—siny,

Applying the orthogonality conditions given by Egs.(1.19), one can prove that matrix \%
is a symplectic matrix. It can be seen explicitly as follows:

b

A A * A A * A A * A A * T
VitV V=V, V4V, V-, U
2i

\A] g U\A] = e s
2 2i
(2.6)

=U

2i
Here we took into account that every matrix element in matrix VUV can be calculated

using vector multiplication of Egs. (1.19). Furthermore, the symplecticity of matrix \% yields

A

the following useful expression for the inverse matrix, A\
V'=-Uuv'u |, 2.7)
where we took into account that U'U = I and U’ = —U, and I is the identity matrix.

Let us consider an ensemble of particles, whose motion (at the beginning of lattice) is
contained in a 4D ellipsoid. A 3D surface of this ellipsoid is determined by particles with
extreme betatron amplitudes. For any of these particles, Eq. (2.3) describes the 2D-subspace
of single-particle motion, which is a subspace of the 3D surface of the ellipsoid, described by
the bilinear form

R'Ex=1 . 2.8)
This ellipsoid confines the motion of all particles. To describe a 3D surface, in addition to
parameters ¥, and y, of Eq. (2.5), we introduce the third parameter y; so that the vector §
would describe a 3D sphere with a unit radius, according to the equation

&g)=1 , 2.9)

where
Cosy, cosy,
E=| iy cosys |- 2.10)
cosy, siny,
—siny, siny,
Then, we can rewrite Eq. (2.3) in the following form,
%= VAE, @2.11)

which describes a 3D subspace confining all particles of the beam. In other words we can
consider that the amplitudes of the boundary particles are parameterized by ;
(A, > A cos s, A,—>A,cosys.), so that we would obtain a 4D ellipsoid.

Expressing & from Eq. (2.11) and substituting it into Eq. (2.9), one obtains the quadratic
form describing a 4D ellipsoid containing all particles:

ﬁr[(VA)_l)T (Va's=1 . 212)



Comparing Eqgs. (2.8) and (2.12) and using Eq. (2.7), one can express the bilinear form, =
as follows :

b

E=UVEV'U’ , (2.13)
where ' =ATA™ is a diagonal matrix depending on two amplitudes 4, and 4,, and we
took into account that matrices A~ and U commute.

To determine the beam emittance (volume of the occupied 4D phase-space) described by
Eq. (2.8) we invert Eq. (2.13). That yields,

E=V'EV . (2.14)
As can be seen, a symplectic transform V reduces matrix Z to its diagonal form. Then, in
the new coordinate frame the 3D ellipsoid enclosing the total 4D phase-space of the beam
can be described by the following equation:

~r _t = 12 A ~r 12

:11x2+:22px +:33y2+:44py =1 . (2.15)
It is natural to define the beam emittance as a product of the ellipsoid axes (omitting the

factor °/2 correcting for the real 4D volume of the ellipsoid) so that
1 1

Eyp = F———= = (2.10)
ELERELEY \/det(E’)
Calculation of the determinant using Eq. (2.14) yields,
1 44,)
= ) (4,4,) . @.17)

T @) [det(V)

Here we took into account that det(\?) =1, which is a direct consequence of matrix V
symplecticity. Thus, the squares of amplitudes 4, and 4, can be considered as 2D emittances
& and &, corresponding to the eigen-vectors Vv, and V,. They coincide with the horizontal
and vertical emittances of the uncoupled motion, and their product is equal to the total 4D

emittance: & & = &;,. Consequently, one can write matrix Z' as

/e, 0 0 0
0 l/gg 0 0
0 0 1l/g 0
0 0 0 I1/e

ol
Il

(2.18)

Similarly to the one-dimensional case the particle ellipsoid shape, described by matrix =,
determines the beam emittances & and &, , and the eigen-vectors v, and V,. In this case the
beam emittances are reciprocal to the roots of the following characteristic equation,

detE-itu)=0 . 2.19)
One can prove the above using Egs. (2.13) as follows:

det(E—iAU)=det(UVE'V U" —i4U)=det(& - iA U"V UVU)=

det(&'—i2U)= (Lz _P2 )(L _ /IZJ _o (2.20)
&

& 2

[SS]

!
bl

Knowing the beam emittances and consequently E', one can obtain from Eq. (2.13) a

system of linear equations for matrix V,



EVU = UVE' . 2.21)
Multiplying the above equation by u,, one obtains two equations for the eigen-vectors:
[é —LUJG, =0 2.22)
€
where /=1, 2, and

1 0
-1 0
u, = N u, = i . (2.23)
0 —1i
We also took into account that Vu, =V,, Uu, =—iu, and E'u, = giu,.
I

Taking into account Eq. (2.8) a Gaussian distribution function for coupled beam motion
can be written in the following form:

A 1 1 A T e A
X)=——eXp| ——X EX . 2.24
S(x) yrcy p( > j (2.24)

Then, the second-order moments of the distribution function are

— A A A gn 1 . | S I
X%, = '[xixjf(x)dx“ :mjxixj exp(—E)(TExjdx4 . (2.25)
1“2

A
i

To carry out the integration one can perform a coordinate transform, ¥ = V~'X, which
reduces matrix = to its diagonal form. After simple calculation one obtains the matrix of the
second-order moments

&g 0 0 0
. A0 g 0 0.,
r=V A& (2.26)
0 0 & 0
0 0 0 ¢

One can easily prove by direct substitution that matrix X is the inverse of matrix =.
Consequently, a symplectic transform VU reduces matrix X to its diagonal form. Applying
a similar scheme as above for obtaining emittances and eigen-vectors from matrix =, one

finds that the beam emittances & and &, can be computed from matrix X as roots of its
characteristic equation,

detEU+idl)=0 ., g=4 2.27)
while the equations for the eigen-vectors are
Bu+igil, =0 . (2.28)

It also follows from Eq. (2.26) that the total beam emittance is equal to
Eip = E&, :w/detiﬁ‘.i . (2.29)

3. Beta-functions for Coupled Motion



Employing the previously introduced notation, one can describe a single-particle phase-
space trajectory along the beam orbit as

%(s) = M(0,5)Rel\fz, ¥, + /&, ¥,¢ " |
= Re( ,81 {,1 (S)e_i(‘//1+/ll(s)) + ’82 02 (S)e—i(y/2+/12(s))) ’

where the vectors \Afl(s)Ee"”‘(s)l\A/I(O,s)f'1 and \Afz(s)Ee"’“(”l\A/I(O,S)Q'2 are the eigen-

(3.1)

vectors of the matrix M(O,S)MM(O,S)_I, v, and W, are the initial phases of betatron

motion and M =M(0,L) is the transfer matrix for the entire ring. The terms e and

—ipy (s)

e are introduced to bring the eigen-vectors to the following standard form:

VB () VB (s)e™

(
iu, (s)+a,(s) _ ()45, (5) iy

. A N I/ AE .
1(8) = memm s Vy(8)= R0 , (32

i, (5) +, () i, () + a0, (5)

IBIy(S) \/ﬂzy(s)

<>

so that £4(s) and 4,(s) would be the phase advances of betatron motion. Here £,.(s), B,,(),
B.(s) and B, (s) are the beta-functions; &,.(s), &,,(s), &, () and @, (s) are the alpha-functions
which, as will be shown in the next section, coincide with the beta-functions’ negative half-
derivatives at regions with zero longitudinal magnetic field; and six real functions #(s), #,(s),
#5(5), #,(5), v,(s) and v,(s) are determined by the orthogonality conditions of Eq.(1.19). Below
we will be omitting their dependence on s where it does not cause an ambiguity. Two eigen-
vectors v, and V, were chosen out of two pairs of complex conjugate eigen-vectors by
selecting #, and #, to be positive.
The first orthogonality condition of Eqs. (1.19),

(WU%1 )= 20, +u,)=-2i , (3.3)
yields # = 1-— #, , and similarly for the second eigen-vector, #, = 1— ;. The next two
equations, ¥,' UV, =0 and ¥," UV, =0, arc identitics.

Taking into account the above relations for # and #, the remaining two non-trivial
orthogonality conditions can be written as follows,

05 o Bl v b (Bl - |

1x 2x

(3.4)
( P -a ) /%[l-u2+a1y]}m o
05 Bl v - Bl v
' (3.5)

_[ gz [i(u3 —1)—a2y]+ /ﬁ?j [iu2 +a1y]}im -0



Multiplying both terms in Eq.(3.4) and Eq.(3.5) by their complex conjugate values one
obtains

T (o BRI W I (S i S

X

2 -1 2 2 -1 2 (3'6)
A7+l 0wy —x tuy)f =47 + e, 0—up) -, uy |
where
Ax = Kxalx - Kx_labr >
‘o, , 3.7)

A =rka, -k, a
y =

oo - B
ﬂlx ﬂZy

Subtracting Eqs. (3.6) yields #,=u,. Substituting #,=#;=# into the first equation of Eqs. (3.6)
one obtains the following expression for

A -4
2 2 2 2 x y 2 2
-k, Kk, * KK, [1+(1—KX Ky)

2 2
K, —K,

u= ——— . (3.8)
-K.K,

By definition #, (& = 1,... 4) are real functions' and # and #, are positive. That sets a
constraint for possible values of beta- and alpha-functions,
42_ 47
X v 2 2
ﬁ(l—l(x K, )Sl , (3.9)
K, —K,

and a constraint on a value of #, # < 1.
Knowing # makes it easy to find v,+V, and v,—V, from Eqs. (3.4) and (3.5):

. -1
oV = o) A, +1(Kx(l—u)+ K. u

A, —z(/cy(l—u)+ K, 1u ’ (3.10)
oV = gt A+ i(xx(l —u)-x, u)
A, +ile, (1 —u)—x, )

and, consequently v, and v,

v, :%(v+ +v_ )+ x(n+m) |

; (3.11)
v, =E(v+ —v_ )+ 7z(n—m)

Here # and m are arbitrary integers. Eq. (3.10) results in that v. and v, are determined
modulo 27, which, consequently, yields that v, and v, are determined modulo 7 (see Eq.
(3.11)) resulting in additional solutions. Actually there are only two independent solutions.
The first one corresponds to the case when both 7 and 7 have the same parity, which is
equivalent to z+n = m-n = 0. The second one corresponds to different parity of » and 7,

" Eq. (3.8) also demonstrates that if beta- and alpha-functions are not correctly chosen, so that the value of
the discriminant is negative, u becomes imaginary, thus redetermining the alpha-functions.



which is equivalent to z+#n = m-n = 1. Thus, in a general case, one has four independent
solutions for #, v, and v, set by symplecticity conditions.

Below we will call thirteen functions, 8., B,, Bo, oy Qs Ay Qoy 11, Vi, Vs, it and p,
the generalized Twiss functions. Only 10 of them are independent. Other can be determined
from the symplecticity conditions. Although for known eigen-vectors the Twiss parameters
can be determined uniquely it is not the case if we know only beta-functions. In this case an
application of symplecticity conditions leaves four independent solutions for the eigen-
vectors. Two of them are related to the sign choice for # in Eq. (3.8), and other two (for
each choice of #) are related to uncertainty of v, and v, in Eq. (3.11). The later is related to
the fact that the mitror reflection with respect to the x or y axis does not change f's and &’s
but changes the relative signs for the x and y components of the eigen-vectors’, with
subsequent change of v, and v, by m It is opposite to the case Edwards-Teng
parameterization (see Section 0), where knowing eigen-vectors does not yield unique

solution for the Twiss parameters but knowing Twiss parameters uniquely determines eigen-
vectofs.

Finally, we can express the eigen-vectors v, and Vv, in the following form:

V ﬂZx eivl

By
i(l—u)+a1x L u+ta,,

u+a, i(l—u)+ a,,
ﬂZy

_ —eivl _
That yields the following expression for matrix \% (see Eq.(2.2))

'\, ﬂly
B 0 v B, cosv, =B, sinv,

_a, 1—u usiny, —a, cosv, ucosv, +a,, sinv,

ﬂlx Vv ﬂlx \ ﬂ2x IBZx

VB, cosv, —\ B, sinv, by, 0
usiny, —@,, Cosv,  ucosv, +¢,, siny, Q, l—u
L ﬂly ﬁly ﬂzy ﬂZy

Here v, and v, and u are determined by the beta- and alpha-functions from Eqs. (3.8), (3.10)
and (3.11).

In the case of weak coupling one should normally choose V, as the eigen-vector, which

=

iv,

<>
Il

. (3.13)

mainly relates to the horizontal motion, and V, to the vertical motion. In the case of strong
coupling the choice is arbitrary. As can be seen from Eq. (3.12), in determining beta- and
alpha-functions, swapping two eigen-vectors causes the following redefinitions: S, >/f,. ,
Bop,, a, o, , aoa, , n—>1-u, v > —v, and v,—> —v;. One can verify that Eqs.
(3.8) and (3.10) satisty the above transformations for #, v, and v, .

2 It can also be achieved by change of the coupling sign (simultaneous sign change for gradients of all skew
quads and magnetic fields of all solenoids), which does not change the beta-functions but does change the
v-functions by 7.

10



To find the beam sizes one needs to remember that the amplitudes of beam motion
related to the corresponding eigen-vectors are governed by Eqgs. (2.11) and (2.10). Applying
Egs. (2.11), (3.1) and (3.12) one can parametrize the coordinates of the 4D ellipsoid interior:

XV, yo,vs) = Re(\/;IQII cosyy e +4[e, ¥, siny e ) - (19
The beam sizes (projections of 4D ellipsoid to the horizontal and vertical directions) are
determined by the maximum of x and y variations in Eq.(3.13) and are equal to

a, =\epf+&b
ay :‘Vglﬂly +82ﬂ2y

Let us to write the equation describing the beam ellipsoid in the x-y plane (the projection of
the 4D-ellipsiod to the x-y plane) in the following form,

(3.15)

2 ~ 2
2 _
Sl AP AR B2 (3.16)

2 b

2
a, axay ay

one can find the parameter & by determining at which x coordinate the y coordinate in Eq.
(3.14) reaches the maximum. Comparing this result with the result following from Eq. (3.16)

one obtains®
\hgmgly & cosy, + '\,ﬁZxﬂZy &, CosV, (347
\/glﬂu +&,5,, \/51ﬂ1y + g2ﬂ2y

Comparing Egs. (3.15) and (3.17) to the second order moments presented in Appendix A
one can see that the above beam sizes coincide with the rms beam sizes of the Gaussian

distribution, and the parameter & can be also expressed as following & = <xy> / 1/<xz>< y2> .

4. Derivatives of the Tunes and Beta-Functions

Let us consider the relations between the beta- and alpha-functions. A differential
trajectory displacement related to the first eigen-vector can be expressed as follows:

x(s +ds) = x(s)+ x'(s)ds = x(s) + (px (s)+ gy)ds =

1- u(s))+a (s) R M0 i ()4
\/g_lRe [,/ﬂl (s)+[ ( Lx B, (s) e |ds e~ v
) \/ﬂlx(s g

Alternatively, one can express particle position through the beta-functions at the new
coordinate s + ds:

x(s+ds)= Re(me_i(”l(”d”“”) ):
\/_ [{\/ P (s ’B—lx - imdy:le_i(”l (S)“”)J

@4.1)

“4.2)

1x

Comparing both the imaginary and real parts of Eqs. (4.1) and (4.2) one obtains:

11



d
% =—2a,, + R\, B,, cosv, ,

‘ (4.3)
dS ﬂlx 2 ﬂlx 1 .

Similarly, one can write down equivalent expressions for the vertical displacement,

y(s+ds)=y(s)+ y'(s)ds = y(s) + (py (s)— gx]ds =

. 4.4
. us)+ao S . .
\/8_1Re ,ﬂly (S) ezvl(S) _ Mezvl(s) +£ ﬂ]x(s) ds e—z(,ul(s)+wl) ,
V ﬂly (S) 2
and
y(S + dS) = \/zRe ,ﬂly (s) +dﬂ—1y 4 ’ﬂly (S) (dVl _ dﬂl) e*i(ﬂl(AY)vLW*Vl(AY)) , (45)
2\, ﬂly (S)
which yields:
ap
d;y :_2a1y _R ﬂlxﬂly COSVl ’

(4.6)
du, dv, _ u +£ P sinv
= L
ds ds /31y 2 ﬂly

Similar calculations carried out for the second eigen-vector yield,

dﬂZy

I —2a,, =R\, B, cosv,

At _1—u+£ P sinv
- .,
ds B, 2\5,
ap,,
d—s2 =2a, + R\, p,, cosv, ,

du, dv, _u R |B,
dS dS ﬂZx 2 ﬂZx

One can see that in the absence of longitudinal magnetic field the derivatives of the phase

“4.7)

sinv,

advances du,/ds and du,/ds are propotrtional to (1-#) and are positive. That explains the
selection rule for the eigen-vectors formulated at the beginning of Section 3 which requires

u, and #, being positive (#, = #,=1—u = 0). Note that there is no a formal requirement for
d(u,+v,)/ds and d(u,+v,)/ds being also positive and therefore # can be negative, while our
already wide experience says that in the most of practical cases it belongs to the [0,1] interval.

The relative contributions of x and y parts in the eigen-vector normalization equation,
v,"Uv, =-2i,1=1,2, are proportional to # or 1-u#. Therefore parameter # can be considered

as a coupling strength. In the absence of coupling the parameter # is equal to 0 (or 1 if x and
_y vectors are swapped). Nevertheless, in the general case, an equality » = 0 does not mean an
absence of coupling. As one can see from Eqs. (3.8) and (3.10) the condition # = 0 requires
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and yields e’ = (Ax +iK, )/(Ax —iKy) and e’ = (Ax +iK, )/(Ay +iKy). These

equations do not require auxiliary beta-functions S, and g, to be equal to zero, and,
consequently, the condition #» = 0 does not automatically mean absence of coupling.
Although strictly speaking # cannot be considered as a coupling parameter it reflects strength
of the coupling and is a good value to characterize it in practice. In particular #» = V2
corresponds to 100% coupling when the motion for both eigen-vectors is equally distributed
in both planes (see an example in Appendix B). It is also useful to note that » does not
change in a transfer line without coupling. Actually, in the absence of coupling the x and y

A=A

)2

parts of the eigen-vector, v, and V , are independent and their normalization,

A

Vx,y+U2€'w = {u, l—u}, does not change because the determinants of the corresponding

2x2 transfer matrices are equal to 1. Here U, is the 2D unit symplectic matrix.

5. Representation of Transfer Matrix in Terms of Generalized Twiss Functions

One can derive a useful representation of the transfer matrix M, , = M(s,,s,) between
two points of a transfer line in terms of the generalized Twiss functions. Using the

definitions of eigen-vector and matrix \% (see Egs.(3.1) and Eq.(2.2)) one can derive the
following identity

V,S=M,V, . (.1)
Here \71 and \72 are the V matrices given by Eq. (3.13) for the initial and final points. The

matrix S is
cosAu, sinAy, 0 0
—sinA cosA 0 0
S = Hy Hy ‘ , (5.2)
0 0 cosAu, sinAu,
0 0 —sinAu, cosAu,

where A, , are the betatron phase advances between points 1 and 2. Multiplying both sides
& -1

of Eq.(5.2) by the inverse matrix, V, = —UVITU, as given by Eq.(2.7), allows one to

express the transfer matrix, M, , in the form
' c o T
M,=-V,SUV, U . (5.3)
In the case of the one-turn transfer matrix M the matrices V| andV, are equal and Eq.
(5.3) simplifies. Explicit expressions of matrix M as well as matrices & and X are presented

in Appendix A.

6. Edwards-Teng Parametrization

The Edwards-Teng parzlmetrization[(’J is based on a canonical transform R which reduces

-~ |P p
M= , 6.1
{q Q} oD

M =RMR™

a 4x4 transfer matrix,

to its normal modes form

b

6.2)

whetre
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M—AO 6.3
1o B’ ©3)

and P, p, Q, q, A and B are 2x2 matrices. Teng suggested parametrizing a symplectic matrix

ﬁ as follows:

R 'Ecos¢ -D'sin ﬂ 64
| Dsing  Ecos¢
where E is the unit 2x2 matrix, and D is a 2x2 symplectic matrix,
_la b
D= B d} , (6.5)

so that ad —bc =1. Thus, matrix R is parametrized by four parameters: a, b, ¢ and @. Matrix

M describes the particle motion in new coordinates and can be parametrized by six Twiss

A

parameters. Finally, one obtains ten parameters to fully describe the transfer matrix M. The
six Twiss parameters 3, &, i;, [, @&, and 4, are so called the Twiss parameters of the
decoupled motion. Edwards and Teng expressed them through the transfer matrix elements.

In the course of this section we will express them through the eigen-vectors. As will be
seen below, this procedure reveals the close relation of the two representations and sheds
additional light on the physical meaning of both parameter sets.

Expressing matrix M through M in Eq. (6.2) and substituting the result into Eq. (1.15),
one obtains

R'MRY, = 4.V, . (6.6)
Eq. (6.6) can be rewritten as

Mvi =4V, (6.7)
where the vector

Vv, =RV, 6.8)

is the eigen-vector of matrix M. To determine matrix R = R(s) we take into account that

vectors V, represent decoupled motion; ze., the vector elements corresponding to another

plane are equal to zero. Using the definitions of R, ¥, and expressing V, through the Twiss

parameters of the decoupled motion, one can rewrite Egs. (6.8) in the form:

i ] VA
VA cosg O  —dsing bsing | ill-u)+a,
z\-/l-ﬂﬁll _ 0 co‘s¢ csing —asing \/K;Vl . (6.9)

asing bsing  cos¢ 0 \/Ee

0
0 csing dsing 0 cosg | wmta,

iv
_—e

S VA
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B _ } eiv2 ]
0
cos¢ 0 —dsing bsing | zu+a2x iv
0 ——2e
\/— |0 cos¢ csing —asing \ B 6.9b)
zfza “|asing bsing  cosg 0 B, B
- : csing dsing 0 cos g i(l_u)+a2y
V. |
ﬂZy |

Egs. (6.9) represent eight scalar equations and they allow one to determine the parameters of

matrix R as well as the beta- and alpha-functions of the decoupled motion. Using the last
two equations in Eq. (6.9a) and the first two equations in Eq. (6.9b), we obtain the following

equations for matrix R parameters:

(1 —u)+ .
ﬂlx a, _l( u’g . bt +\/ﬂ71y€wl _
V M lx

(1 u)+a1 w+a,,
ﬂlx Ct_ \/_ th \/7 ll 0 H

(l—u)+a2
JB, B, d - %y g
zy '\IﬂZy
Cuta,,

il-u)+a
e + B, ¢ +—( ) 2
ﬂZx ﬂZy

Here the following notation was introduced: a, =atang, b, =btang, c, =ctang and

(6.10)

a =0

t

d =dtang . Taking into account that 4,, b,, ¢, and d, are real parameters, one can separate

the real and imaginary parts in Eq. (6.10). That yields the following four solutions:

|8, a,, sinv, +ucosv,
a. =
t ’
ﬂZX l_u

sinv,

ﬂlxlgly >
_cosv, [aZX 1- u)— a,, u]— sinv, [u(l - u)+ a2xa2y]

o (1_”)\/ﬂ2xﬁ2y ,

/ ucos v1 +a,,siny,
>

and four useful 1dent1tles

(6.11)
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'\,ﬂlxﬂly Sinvl Z'VﬂZxﬂZy SinV2 ’
'\,ﬂlxﬂZy (a2x sinv, +ucos Vz) v ﬂZxﬂly [alx sinv, — (1 - “)COS Vl] 5
,/,leﬂzy (aly sinv, +ucosv1): ,/,Bzx,Bly [azy sinv, — (1 —u)cos vz] , (6.12)

(aZX CosV, —usinv, )(l—u)—(azx sinv, +ucosv, )azy B

'\,ﬁZXﬁZy

(aly cosv, —usinv, Xl —u)—(aly sinv, +ucosv, )alx

'\/lglxﬂly

The identities can be directly derived from the symplecticity of matrix \'a Using Eq.(2.0)

one immediately obtains that VUV/U=-I. Using the explicit definition of the matrix V of
Eq.(3.13) and performing matrix multiplication, after some algebra, one obtains these
identities in the off-diagonal 2x2 block of the resulting matrix.
Using matrix D symplecticity and Eqs.(6.11), after simple algebra one obtains
u

tan’ p=a,d, —b.c, = T (6.13)
—u
That finally yields:
sing =+Ju . (6.14)

Now using the two first equations in Eq. (6.9a) and the two last equations in Eq. (6.9b),
one obtains equations for the beta- and alpha-functions of the decoupled motion:

JB = M—Meiv‘dt—%eiv'bt cosg
ly

I+a i(l—u)+a . u+a,, .
1 1x iv Y v
- =| - +1/ﬂ1ye ‘c, + ea, |cosg

B VB VA

\/,B_2=[\/ﬂ_2xe”2at —%e”%t +4/ B, ]cos¢ ,
2x

_ita, Ciuta,, o i(l—u)+0!2y
=| By e" e”d, ———————|cos¢
N N N

After lengthy calculation employing identities (6.12), one finally reduces the above equations
to the simple form:

(6.15)

,Bl — lﬂlx , a] — lalx ,
—u U (6.16)
,B — ﬁZy — a2y
l-u T 7 1-u

As can be seen, although Eq. (6.14) yields four different values for angle ¢, other elements of

matrix R and the beta- and alpha-functions of the decoupled motion are uniquely related to
the generalized Twiss parameters.
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The betatron motion in the normal modes representation can be written in the following
form

X(s) = M(0,5)%(0) , (6.17)
where

M(0,s) = R(s)M(0, s)R ' (0). (6.18)
Edwards and Teng determined the phase advance of the betatron motion using a standard
recipe for the decoupled motion:

V.(s)e ™ =M(0,5)¥,(0) . (6.19)
Using the definition of matrix I\N’[(O,S) of Eq. (6.18), we can rewrite Eq. (6.19) as
V.(s)e ™ = R(s)"'M(0,s)R(0)¥,(0) = M(0,5)¥,(0) . (6.20)

As can be seen, the obtained equation coincides with the definition of betatron phase
advance of Section 4 (see Eq. (3.1) and below), thus proving that the betatron phase
advances for both parametrizations are the same.

Discussion

This article introduces further development of the coupled betatron motion
representation introduced in Refs. [6] and [7]. Our approach is based on a parametrization of
the 4x4 symplectic transfer matrix by introducing ten functions: four beta-functions, four
alpha-functions and two betatron phase advances, which we call the generalized Twiss
functions. The beta-functions have similar meaning to the Courant-Snyder parametrization,
and the definition of alpha-functions coincides with the definition for uncoupled motion at
regions with zero longitudinal magnetic field, where they are equal to negative half-
derivatives of the beta-functions. The approach is based on the parametrization of
normalized eigen-vectors. Knowing the eigen-vectors, one can easily obtain the generalized
betatron functions employing Eq.(3.2). Egs. (3.2), (3.8) and (3.10) allow one to perform the
inverse operation of finding eigen-vectors from the generalized Twiss parameters. A useful
representation of a transfer matrix in terms of the generalized Twiss functions is also
introduced in Section 5.

A definition of 4D emittance is introduced for an ensemble of particles, whose motion is
contained in a 4D ellipsoid. A 3D surface of this ellipsoid is determined by particles with

extreme betatron amplitudes. Eqgs. (2.8) and (A.2) determine the bilinear form = describing
this beam boundary. Consequently, the beam density distribution function can be written as

fx,p,y,p,)=A3RKEXx-1) |
in the case of KV-distribution, and as

RTEX
f(x,px,y,py)=AeXp[— > |

in the case of Gaussian distribution. The chosen normalization of the eigen-vectors, Egs.
(1.19), yields a simple relation between the beam emittances related to the eigen-vectors and

total 4D emittance, &,, = &&,. Knowing the bilinear form E or the matrix of second-order

moments X, =X,X,, one can compute corresponding beam emittances, eigen-vectors and,

consequently, generalized Twiss functions using Eqs. (2.19), (2.22) or Egs. (2.27), (2.28).
A comparison of the developed parametrization with the Edwards-Teng parametrization
provided additional insight for both parametrizations. First, it proved that the betatron
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motion phase advances for both parametrizations are equal; Ze,. the betatron phase advance
for the Edwards-Teng representation is directly related to particle oscillations in the x or y
plane, depending on which plane a particular eigen-vector is referenced to. Second,
Edwards-Teng beta- and alpha-functions are simply related to the corresponding generalized

beta- and alpha-functions: B, = B,/ (l—u) , o, =a, (l—u), where # is the coupling

parameter directly related to the angle of Teng’s rotation, sin” ¢ = u .

Unlike the Edwards-Teng parameterization the Mais-Ripken parameterization (as well as
the parameterization developed in this article) allows one to obtain the unique solution for
the generalized Twiss parameters from the known ring transfer matrix or the eigen-vectors.
There are two linearly independent solutions in the case of Edwards-Teng parameterization.
On the contrary, if one needs to determine the transfer matrix from the 10 Twiss parameters
the Edwards-Teng parameterization yields the unique solution, while the parameterization
developed in this article yields four solutions. To choose a unique solution one additionally
needs to know which of two choices for # and v, (or v,) needs to be taken (see discussion
after Eq. (3.11)).

The presented parametrization has been proven useful for both analytic and numerical
analysis of coupled betatron motion in circular machines and transfer lines. Although we
considered only xy-coupled motion in the article we would like to note that all results
obtained in Section 2 are also applicable to three-dimensional particle motion. It is important
to note that although the canonical coordinates were used throughout the article, this issue
usually does not create complications in practical applications of the developed formalism
because the canonical and geometric coordinates coincide at regions with zero longitudinal
magnetic field. For example, the software developed by one of the authors for coupled-
motion analysis always uses transfer matrices which start and end at points with zero
longitudinal magnetic field, and thus, the canonical and geometric coordinates always
coincide. Appendix B shows an example of analysis of how the strongly coupled motion for
the Fermilab electron cooling project has been analyzed with the developed formalism.

The anthors are grateful to Y. Chao, G. Krafft, L. Harwood, S. Corneliussen and A. Burov for careful
reading of the manuscript and useful suggestions for improving its clarity.

Appendix A. Explicit Expressions for Transfer Matrix, Bilinear Form and Matrix of
Second Order Moments

Performing matrix multiplication in Eq.(5.4) allows one to express transfer matrix
elements through the generalized Twiss functions:

M” = (1 —u)cos,u1 +a, sinp +ucosp, +a, siny, (A.1.1)
M, = p, sinpy + B, sinp, (A1.2)

Ms \F[%Sln(,ulﬂ/l +ucos(,ul+v1 \/7[%}5111/% V2 (1 u)cos(,u2 Vz)] ,  (AL3)
A/[14 \/ﬂlxﬂly Sln(lLll+‘/l)+\/182xﬂ2y Sm(ﬂz Vz > (A.1.4)

2 2

. l—u) + . + .
M, = —(u)—a”sm,u1 —Msm,u2 , (A.1.5)
1x ﬂZx
Mzz = (1 - u)cos My +uUcos i, —a, sinp, —a, sinu, (A.1.6)

18



= [(1_”)051

_N1—en, —uen, Jeodus +41) | en, +1—ufsiniyg +v1)
23 m
luct,, ~(1-ues Jeod 1, —v,) et o5, +1—u)fsinlus, ~v5)

BB, ’
M24 \/71 ucos(,ul +V1 sm(,u1 +v1)]+\/'§7[ucos(,uz Vz) -, sin(,uz—vz)] , (A.1.8)

(A.1.7)

it s ) -k s o ] . 11

Ix

My, = BB, sinlts =)+ BBy, sinles +v5) (A1.10)
M33 =UCOoS U, +(l—u)cos,u2 +a,, sin 4, +a, siny, (A.1.11)
My =B sinp + o, sinpy (A1.12)
i, - lon (1, Joo{as —vi)~lar,, +ud1 —usinlpg —v)

m (A.1.13)

[(l—u)oabC —uoazy]cos(y2 +v2)—[ahazy +u(1—u)]sin(y2 +v2)

JBoB, ’

¥t = o 1) -t sinay )l (2 fi-udeos i +v) -t sins 4] A 114
1y 2y
. 2 2 1—u) 2
M, __Y ey, sin 1, —(M)Jsin,uz , (A.1.15)
ﬂly 'B2y
M44 = U COS L, Jr(l—u)cos,u2 —a,, sinp —a,, sinp, . (A.1.16)

Similarly, using Eq. (2.13), one can express elements of the bilinear form describing the
particle ellipsoid in 4D space:

- 1-u) +a.° u+a,’
g, = (-u) 4o, I (A2.1)
& B, &, B,
& _B. . B
By =—+22 (A.2.2)
& &)
2 2 2 2
A u +a l-u) +a
B, = 24 (-u) +a, (A.2.3)
glﬂly gZﬂZy
- B B
g, - Pw P (A.2.4)
& &
2, 2 o, o
B, =5, N , (A.2.5)
& &
2, 2, a, a,
By =85=—" . > (A.2.0)
& &
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lalxal} +u(l Jcos v, + [alv —u)— alqusm v,

! & BB,

[1p»
Il
[

A2.7
[ahazy +u(1 —u)]cos v, + [aZX(l—u)—azyu]sin Vv, ’ ( )
€34/ ﬂleBZy
& %, = |8, a, cosv, +(1-u)sinv, N B, a, cosv, —usinv, , (A28)
P 3 B &

1>
[

B, @, cosv, —usinv, B,. @y, CO8V, + (1—u)sinv,
= + , (A.2.9)
ﬂly & ﬂZy &

A/ COSV A/ Ccosv
_ ﬂlxﬂly 1 n IBZXﬂZy 2 . (AZlO)
&

Finally, using Eq. (2.26), one can express elements of the second-order moments:

[1]>
Il
[

24 42

f‘11 E< > ep+&by (A3.1)
212 = <xPx> = 22 &, — &0, (A.3.2)
B (1—u)2+a ? u’ +a,,’
S,=(pl)=¢ Ea— = , (A.3.3)
z < ’ > l ﬂlx ’ ﬂZx

Xy = <y2> =&y, +60, (A.3.4)
$,=0p,) =%y =—ca, —6,0,, | (A.3.5)
. , uz+051y2 (1—u)2+052y2
S, = <py >= " te, 7 , (A.3.6)
im = <xy> 231 =¢ \/ﬁlxﬁly cosV, + &,y B, COSV, (A.3.7)
214 = <xpy = (usmvl -, cosvl) &, ['82" (1 u)sinv2 +a,, cosvz) ,

(A.3.8)
& 2 ﬂly . ﬂZy :
Xy = <ypx> =2, =—¢ —((1 —u)sm v, +a,, cosv, )+ &, ﬂ—(u sinv, —a,, cos vz) ,

1x 2x

(A.3.9)

S = <p » >= $.—e (ozly(l—u)—ozlxu)sinv1 +(u(1—u)+ ozlxaly)cosv1 s
o 1 \[ /3111/31y
(A.3.10)

(ah (1—u)- azyu)sin v, + (u(l —u)+ a,a,, )cos Vv,

\ ﬁZxﬂZy

Appendix B. Generalized Twiss Functions for Axisymmetric Distribution Function

&

To increase Tevatron luminosity, Fermilab developed a high-energy electron cooling
device for the cooling of antiprotons”. Because of the high energy of the electron beam (~5
MeV), it is impractical to use the standard choice used in electron cooling devices for beam
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transport where the beam moves in the longitudinal magnetic field the entire way from the
electron gun to the collector. Nevertheless the longitudinal magnetic field is still used for
beam focusing in the cooling section to cancel the beam defocusing due to the electron
beam space charge, and more importantly to prevent collective instability in the electron
beam. To neutralize the rotational motion of particles in the cooling section, the beam is
produced in the electron gun immersed in the longitudinal magnetic field. Consequently, the
beam transport is quite sophisticated, with a large number of bends and focusing elements.
Taking into account that the space-charge effects are comparatively small everywhere except
the gun and the collector, the developed formalism has been used for analysis of the main
part of beam transport. In this section we consider how to find the generalized Twiss
parameters and the mode emittances at the beginning of transport line.

At the exit of the electrostatic accelerator the electron beam distribution is axially
symmetric, and before the beam leaves the magnetic field its distribution function is
uncoupled and can be described by the bilinear form

Vo & 0 0

- l|lay, By 0 0
=, oL@ B , ®.1)

el 0 0 0 a

0 0 o, B

where &, =r, \/mkT, / F, is the thermal emittance of the beam, 7, is the cathode radius, T, is
the cathode temperature, Py and m are the particle momentum and mass, S, =a’/&;,

ay =—+Py/&r (da/ds) and y, = (1 + a02 )/ﬂo are the initial Twiss functions, and « is the

beam radius at the electrostatic accelerator exit. We imply here that  and 7, can be different
due to adiabatic beam expansion in the solenoid. Consequently, magnetic fields at the
cathode and the solenoid exit are related: B, 7. = B &’. After exiting from the magnetic field
an electron acquires the angular momentum proportional to its radius, and the distribution
can be characterized by the bilinear form:

Yo+ @B, a, 0 -0p,
= -0’ =, 0= @ bo @b 0 : (B.2)
ér 0 DB, 7, +P°p, a,
-0p, 0 «, By
where
1 0 0 O
® - 0 1 & 0 ’ ®3)
0O 0 1 0
-® 0 0 1

@ =eB/2F,c is the rotational focusing strength of the solenoid edge, and B is the magnetic

tield at solenoid exit.
To choose initial values for generalized Twiss functions’ we use the axial symmetry of the

* We could use Egs. (2.19) and (2.22) for computing the emittances and eigen-vectors and, consequently,
the generalized Twiss functions, but it would require significantly more complicated calculations than for
the procedure described below .
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electron distribution function. This implies that the horizontal and vertical alpha- and beta-
functions are equal and #=1/2. Thus, we obtam for the eigen-vectors:

JB

_i+2a
o 2@
JBe"

l+2a

25

zvl

e
i+2a
2p

B

i+2a

i

iv,

(B.4)

In this case the Coefﬁaents of Eq. (3.7) are
K. .= Kk =1 and  A=4=0, (B.5)
which creates uncertainty in Eqgs. (3.8) and (3.10) for #, v; and v,. To avoid this uncertainty
we will use primarily Egs. (3.4) and (3.5). Substituting Eqs.(B.4) into Eq.(3.4) yields
e +e =0, (B.6)
while for Eq.(3.5) it yields an identity. The solution of Eq.(B.6) is v, = — v, + 27 (n + 1/2) .
As one can see there are an unlimited number of solutions for v, and v,. We will choose a

solution reflecting the eigen-vectors symmetry: v, =V, = 7 /2. Then, the matrix V is equal

to:
VB0 0 —p
_a 1 1 a
\A] _ \/E 2\/E 2\/E \/E B.7)
0 —Jﬁ ﬁ 0
2J— J_ J_ N_
Using Eq. (2.13) (compare also with Eqs. (A.2)) we obtain the bilinear form,
1+4a’ (1 1 11 (1 1
—+—| o —+— 0 ————
4 g &, g & 2leg &,
a(L+LJ ﬂ(i LJ _l(L_Lj
= g & g & 2e &, B.9)
11 1) I1+4a’(1 1 1 1
0 - ——— —+—| o —+—
2\ g &, 4 \¢g ¢ g &
l(L_L] 0 a[L+Lj ﬂ(L+LJ
2l g & g & & & )]

Comparing Egs. (B.2) and (B.8), one can express generalized Twiss functions through the
Twiss parameters of the beam distribution function in the magnetic field:

By

Cofiveis”

Er

& =

Jirop’ —op,

!
o =—
2\1+ D247
& = s
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2 . . . .
One can see that &¢&, =&, , which verifies the conclusions of Section 2. The last two
equations demonstrate that after exiting the magnetic field the beam distribution is

characterized by two quite different emittances. In the case of FNAL cooler @ 3, >>1
resulting one emittance to be much larger another one. The first emittance is determined by
the angular momentum excited by the solenoid edge field, & = ¢B,r’/(Py) and grows with
the field. While the second emittance is determined by the cathode temperature, & = mkT ¢
/(eB,Py), and decreases with field increase.

The developed formalism presents also a simple way to describe the vertex-to-plane
transform suggested by Derbenev!'l. As it was presented above, the eigen-vectors of Eq.(B.4)
represent the vertex distribution function for v, = v, = 7/2, while for v, =0 and v, = 7 they
correspond to the uncoupled motion, in which x and y coordinates were rotated by 7z/4. The
transform from one to another set of the eigen-vectors can be performed with a matrix
representing a decoupled motion with betatron phase advances for the x and y planes

different by 7/2. In the case if unequal emittances & and & the initially axial-symmetric
beam is transformed to an elliptic beam tilted by /4. If the focusing system is rotated by

7/4, the final elliptical beam is also rotated by the same angle due to the axial symmetry of
the initial distribution. The final beam has an uncoupled distribution function with the

emittances & and &, corresponding to the vertical and horizontal emittances.
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