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Motivation 
1. Practical cooling systems are designed and built to avoid 

Schottky band overlap which compromises performance 
(safety factor ~1.5 is usually used) 

2. Operating cooling systems are frequently used in a regime 
when bands are close to an overlap or slightly overlapped.  
a) In this case, the band overlap need to be taken into account if 

detailed description of the cooling is required. 
b) Quantitative description should be helpful for cooling 

optimization 
3. Presently, all stochastic cooling calculations at FNAL are 

done neglecting effect of band overlap 
a) It needs to be corrected 
b) Taking band overlap into account should help to bring 

together the model calculations and the experimental 
observations (10-20% effect) 
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4. Some oddities in earlier papers 
For example following expressions are proposed in Ref. [1] 

a) Filter method 
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b) Palmer method 
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G(x) is linear without band overlap for both cooling methods 
⇒ These equations are identical in the range of their 
applicability. While authors point out that the difference is 
important. 

                     
1 J. Bisognano and C. Leemann, “Stochastic Cooling” in 1981 Summer School on high Energy Particle Accelerators, edited by R. A. Carrigan et al., AIP 
Conference Proceedings 87, American Institute of Physics, Melville, NY, 1982, pp. 584-655. 
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Theorem: For linear Gl(x) ( Gl(x) = G0 + G′ x ) the following equality 
is justified: 
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Proof: 
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Beam Dielectric Permeability for Longitudinal Cooling 
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♦ 00 /)( pppx −=  is the relative 
momentum deviation 

♦ T1, T2 and 210 TTT +=  are the 

kicker-to-pickup, pickup-to-
kicker and revolution times for 
the reference particle  

♦ 2/1 γαη −=  is the slip factor, 1η  and 2η  are the partial kicker-
to-pickup and pickup-to-kicker slip factors, 22110 TTT ηηη +=  

♦ )(tpδ  is the particle momentum change by the kicker 

f x( )2 ,t

f x( )1 ,t

f x t( , ) 3T2  2η

Ue xt  

T1 1η
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Kicker
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Schematic of longitudinal cooling system 
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♦ Linearizing, performing Fourier transform and solving obtained 
equations relative f2ω (x) yields: 

( ) ( ) ( ) ( )
0

0
222112

)(1(exp~1(exp~
p
p

dx
xdfxTixfxTixf ω

ωω
δηωηω −+−=+   (1) 

♦ We consider the case when the momentum kick is determined 
by the sum of amplified pickup signal and an external harmonic 
perturbation so that: 

( ) [ ] 020 /)(1,)(~/ 02 ppeAexGxfdxpp ext
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 where: ( ) )(
)(),(

,
22

0 ω
γβ

ωω
ω K

Zmc

ZxZeI
xG

ampl

kp=  

 I0 – beam current; Zampl = 50 Ω 
2Tie ω−  takes into account the pickup-to-kicker signal 

delay, equal to the travel time for reference particle 
• Palmer cooling: A(ω)=0 
• Filter cooling: A(ω)=1 (notch filter is on),   G(x,ω)=>G(ω) 
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♦ Substituting (2) to (1) and solving obtained equation results: 
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 where ε(ω) is the beam dielectric permeability   
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♦ Far away from Schottky band overlap the exponent in the 

denominator can be expended in vicinity of revolution 
harmonic, δωωω += 0n , 00 /2 Tπω =  and we arrive to the 
standard formula for the dielectric permeability  
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Beam Dielectric Permeability for Transverse Cooling 
Beam dipole moment at each point is  

.3,2,1,)()()( 0
0 == ∫ kdxxfxy

c
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 . 

Normalizing x and θ by the β-functions  
kkk yy β/~ =  

kkkkkk x βαβθθ /~ −=  
we obtain equations relating the beam 
positions after and before the kicker:  
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Here ( ))(2cos)( xxc ξνπ += , =)(xs  ( ))(2sin xξνπ + , ν is the betatron 
tune, and ξ is the tune chromaticity.  
♦ Passing the kicker changes y but does not change θ  
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Schematic of transverse cooling 

system.
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♦ Performing Fourier transform in Eqs. (3) and (4) and solving 
them relative to )(~

1 xy ω  and )(~
1 xωθ  we obtain: 
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♦ That yields displacement in the pickup 
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Here ( ))(2cos)( 2,12,12,1 xxc ξνπ += , ( ))(2sin)( 2,12,12,1 xxs ξνπ += , 
2πν1 and 2πν2 are the betatron phase advances between 
pickup and kicker so that ννν =+ 21 ,  
ξ1 and ξ2  are the partial tune chromaticities, ξξξ =+ 21 .  

♦ The beam kick is determined by the sum of amplified pickup 
signal and an external harmonic perturbation  
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  βp and βk are the beta-functions in the pickup and kicker.  
♦ Combining Eqs. (5) and (6) we obtain: 
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♦ The solution is similar to the solution for longitudinal cooling. 
It yields the average beam displacement in the pickup: 
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where the beam permeability is: 
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Fokker-Planck Equations 
Longitudinal cooling 
♦ Evolution of the distribution function is described by: 
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♦ The drag force is created by the particle self-interaction and 
therefore is not directly affected by the band overlap; but it 
is affected by screening of the particle signal 
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Here NxGxG /),(),(1 ωω =  is the single particle gain,  
( )nxn ηωω −= 10 ,  

N  is the particle number in the beam,  
ε(ωn) in the denominator takes into account screening effect 
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♦ The diffusion is created by noise in the kicker voltage:  
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where PU(ω)  is the spectral density of kicker voltage consisting of 
two contributions. The first one is related to the noise of the 
electronics, PUnoise, and the second one is related to the particle shot 
noise.  

♦ The beam current shot noise for non-interacting particles is:  
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♦ Combining Eqs. (27) and (28) and simplifying one obtains: 
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Transverse cooling 
♦ Natural variables for transverse cooling description are the 

action-phase variables (I, ψ): ( )( ) 2//12 222
yyyy yyI βαθαθβ +++= , 

where βy and α y are the beta- and alpha-functions of the ring.  
♦ We assume that there is no x-y coupling in the lattice, and the 

cooling is linear in betatron amplitude. Then the beam 
distribution function is described by the following equation: 
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Here ),,( tIxff ⊥⊥ ≡  is the distribution function normalized so 
that ∫ =⊥ )(),,( 0 xfdItIxf  and ∫ = 1)(0 dxxf ,  
λ⊥(x) is the cooling decrement 
D⊥(x) is the diffusion coefficient.  

Because of system linearity λ⊥(x) and D⊥(x) do not depend on I. 
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♦ Similar to the longitudinal cooling the transverse cooling is 
created by the particle self-interaction and therefore is not 
directly affected by the band overlap. But it is still affected 
by particle screening of signal by other particles. The result is: 
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where ( ) ( ) NGG /1 ωω ⊥⊥ =  is the single particle gain. 
♦ The diffusion is created by kicker noise and is combined from own 

noise of power amplifier, P⊥U(ω), and the particle shot noise 
suppressed by particle interaction: 
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where ∫ ⊥= IdItIxfxI ),,()(  is the average action for given 

momentum deviation x.  
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Example: Longitudinal cooling in Debuncher (Filter cooling) 
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σp=1.05 10-3       σp=2.1 10-3 

Gaussian distribution, G(ω) = 0.0023i , A=1, n = 12000, nf0=7.078 GHz 
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Flat distribution ( )88 )//()2/1(exp)( ppxxf Δ−∝ , G(ω)=0.000538i, A=1, 
n=12000, nf0=7.078 GHz 


