
 

Feedback System for Energy and Beam Position Stabilization. 
Valeri Lebedev 

1. The results of the beam motion study  
 The study of the beam motion at different places of the accelerator has shown that the beam has the 
excursions in energy and in both transverse planes.  Currently, we have many measurements of the beam 
motion but the measurement results performed at ARC1 (January 96) and Hall C line (October 1996) will 
be mainly discussed because they exhibit the main characteristics of the beam motion with good 
resolution and, consequently, their results determine the requirements to the feedback system.  
 The spectral density of the beam motion can be separated in two main parts: the low frequency part 
with frequency below 60 Hz and high frequency part due to beam motion at frequencies of power line 
harmonics. 
 The measurement in ARC1 were performed January 21, 1996 with SEE BPMs at sampling rate of 
113.7 kHz and duration of one measurement of 0.144 s. They showed that for time less than 1 s the power 
line harmonics make the main contribution into beam motion. The amplitude of beam displacement was 
about 100 µm at 60 Hz and 30 µm at 180 Hz. The amplitude of relative energy oscillations was about  
3⋅10-5 at 60 Hz and 2⋅10-5 at 180 Hz. In a few of these measurements there were peaks at 120 Hz and 240 
Hz but their values were significantly smaller. A contribution from other power line harmonics was not 
observed. They demonstrated that for the beam current of about 10 µA the rms accuracy of the BPMs 
related to the electronic noise was 40-50 µm.  
 The measurement in the Hall C line was performed in October 24, 1996, with the transport line SEE 
BPMs at sampling rate of 7141 kHz. The transport line SEE BPMs have longer integration time and 
therefore better accuracy. Their measurement time is 16 times longer and, consequently, the spectrum of 
the beam motion can be obtained for 16 times smaller frequency. From this point of view this data is 
more valuable for the feedback system design. There are 5 sets of data measured during 6 s. 
 Figure 1a shows an example of measured data. To obtain a better resolution for the beam motion 
spectrum the first three power line harmonics were subtracted from the measurements before performing 
the FFT. Their amplitudes and phases were fitted by the least squire root method and shown in Tables 1 
and 2. Figure 1b exhibits the spectrum of the signal shown in Figure 1a without the first three harmonics 
in it. One can observe many power line harmonics which spread up to 1.2 kHz. Most powerful harmonics 
are at 300 and 720 Hz. The noisy plateau in the spectrum is related to the noise of BPM electronics and 
determines the rms BPM resolution of about 20 µm for beam current of 38 µA which is in a reasonable 
agreement with the laboratory measurements. 
 The residual value of beam motion in BPM signal after subtraction of these first harmonics is 
comparable with BPM noise. Thus, to estimate the beam displacement due to the rest of the power line 
harmonics one needs to separate noise of BPM electronics from the real beam signal. The spectral 
density of the BPM noise does not depend on frequency and we can reasonably guess that noise plateau in 
the signal is totally related to the BPM noise. Therefore the signal spectrum was filtered so that only the 
harmonics near the power line frequencies were left. Then the inverse FFT produces a signal which 
characterizes the beam motion at higher power line harmonics. Figure 1c shows signals for the case when 
the first three harmonics are subtracted from the signal. Here the crosses show the BPM signal and the 
solid line shows an estimate of beam motion related due to power line harmonics (without the first three 
harmonic). 



 2

a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.071000

500

0

500

time, s

ho
ri

zo
nt

al
 b

ea
m

 d
is

pl
ac

em
en

t, 
um

 

b)

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560

0

5

10

15

frequency, Hz

|A
n|

, u
m

/h
ar

m
on

ic

0

 

c)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
200

100

0

100

200

time, s

ho
ri

zo
nt

al
 b

ea
m

 d
is

pl
ac

em
en

t, 
um

 

 
Figure 1. Beam motion at IPM3C12: a) measured signal (only first 70 ms are shown), b) spectrum without first three harmonics, c) 

measured signal without first three harmonics - ×, and an estimate of the beam displacement due to higher power line 
harmonics - solid line. Beam current is equal to 38 µA, and the beam energy is 3.245 GeV. 
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 Low frequency part of the signal spectrum presented in Figure 1 are shown in Figure 2. One can see 
that it spreads from 0 to about 70 Hz and does not have definite frequencies. Frequencies of about 30 and 
58 Hz make the largest contribution. Earlier in the measurements in the ARC2 we observed large phase 
oscillations of 60 Hz beam motion. The frequency of these oscillations was about 1 Hz and they are 
apparently related to this 58 Hz component. There is also peak at 145 Hz frequency which origination is 
unknown. 
 The energy oscillation which can be estimated from Hall C measurements is about 2 times larger than 
measured at ARC1 and are equal to 6⋅10-5 at 60 Hz and 2⋅10-5 at 180 Hz. 
 
Table 1. Amplitudes of power line harmonic at IPM3C12 for different measurements 
File name long11 long21 long31 long41 long51 
Amplitude at 60 Hz, µm 236.9 255.8 240.9 230.9 266.9 
Amplitude at 120 Hz, µm 24.8 25.5 22.9 22.1 22.1 
Amplitude at 180 Hz, µm 54.7 54.2 54.5 55.6 53.4 
Residual rms beam motion at 
other power line harmonics, µm 

 
25.9 

 
25.2 

 
24.7 

 
25.8 

 
26.05 

 
Table 2. Amplitudes of power line harmonic at different BPMs (file: long11)  
BPM name IPM3C07 IPM3C08 IPM3C12 
Coordinate x y x y x y 
Amplitude at 60 Hz, µm 100.3 198.7 109.6 111.2 236.9 44.3 
Amplitude at 120 Hz, µm 12.9 47.5 13.8 25.7 24.8 6.21 
Amplitude at 180 Hz, µm 18.5 123.1 13.9 64.1 54.7 5.1 
Residual rms beam motion at 
other power line harmonics, µm 

 
10.8 

 
47.9 

 
8.8 

 
26.1 

 
25.2 

 
6.7 
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Figure 2. Low frequency part of the spectrum presented in Figure 1. 
 

2. The beam motion and general requirements to the feedback system  
 The requirements to the beam position and energy stabilization are determined by the natural beam 
energy spread and size on the target which allows to reach the highest beam quality. Table 2 exhibits the 
main parameters of 4 GeV beam and main requirements to the feedback system. The level of stabilization 
was chosen so that the feedback system contribution should not excess 20% for the beam size and 10% 
for the energy spread. The safety margin of about 10 dB was put into the suppression values to anticipate a 



 4

possible enlargement of beam motion at a long machine run.  We use here the effective beam emittance 
(Courant-Snyder invariant) 

ε βθ αθ γ= + +2 22 x x ,     (1) 
to describe the requirements to the transverse beam motion independently on the machine beta-functions. 
Here β is the design beta-function, 2α=−dβ/dz and γ=(1+α2)/β , x and θ are the beam displacement and 
angle at the exit of the feedback system. It is important to note that the level of intrinsic noise of the 
feedback system due to noise of the BPM measurements is an important issue of feedback system design. 
The last part of the table shows requirements to the beam motion due to feedback system noise.  

Table 2. Main parameters of the beam and requirements 
Natural beam parameters (sizes without beam motion) 

Beam emittance at 4.045 GeV, rms 
Relative beam energy spread, rms 

 
0.06 nm 
15 ppm 

Requirements to beam motion at the feedback exit 
Effective beam emittance, rms 
Relative energy spread, rms 

 
< 0.024 nm 
< 6.7 ppm 

Requirements to suppression at different frequencies 
Suppression of 60, 120, 180 and 240 Hz 
Suppression at frequency of 30 Hz 
Suppression at frequency less 30 Hz 

 
< 30 db 
< 20 db 
<{600/f[Hz] }db 

Requirements to the beam motion excited by the feedback system itself 
Effective emittance excited by feedback system noise, rms 
Relative energy fluctuations excited by feedback system noise, rms 

 
< 0.015 nm 
< 5 ppm 

 The current status of the CEBAF accelerator is sufficiently good, so that the energy and position 
oscillations do not limit machine operation and do not cause any significant decrease of the free aperture. 
Thus, it is sufficient to use only one feedback system (for each hall) to get the required by physics 
experiments improvement of the beam stability. Such systems has to be located in each hall and have to 
stabilize the beam position in a corresponding hall transport line. One hall only can be chosen for the 
energy stabilization. It implies that if there is another hall utilizing the same energy it will get the same 
good energy stabilization. In the case of another energy the energy stabilization can be spoiled by energy 
fluctuations in injector and by phase fluctuations of the accelerating voltage of main linacs. The first can 
be fixed by the injector feedback system while the second can be improved by careful path-length 
adjustments for multipass operation. Below we will consider one system which can be located in any of 
two Halls (Hall A or Hall C) taking into account that they have similar optics and use the same kind of 
hardware. 

2. Optics and BPM resolution. 
 The optics for Halls A and C was recently changed to increase the horizontal dispersion and get 
optimal conditions for beam position stabilization. The beta-functions, dispersion and betatron phase 
advances  for Hall C are shown in Figure 3 (Hall A have a close optics). One can see that the peak 
dispersion was increased in about two times in comparison with base line design. There are also larger 
beta-functions; and the betatron phase advances between corresponding BPMs are about 900 what is 
optimal for the feedback system space resolution. The list of BPMs and correctors for the feedback 
system is shown in Table 3. The design beta-functions, dispersion and phase advances are also shown in 
the table. 
 First we consider an accuracy of the extraction of vertical beam position and angle from the BPM 
measurements. Taking into account that the position and angle of the beam are changed during beam 
transportation we will use the Courant-Snyder invariant (effective emittance of beam transverse motion) 
to express the accuracy of the beam position measurements. 
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Table 3. 

NAME  BetaX  AlfaX  BetaY  AlfaY  DspX  DspXp  NuX  NuY 

MHC3C02V   1384.96 -1.43703 7369.51 12.0956 -26.251 -0.0422399 0.174094 0.162417 
MHC3C04H  1540.29 1.55229 984.911 -2.16622 0 0 0.552712 0.332461 
MHC3C07V 1782.47 -1.97754 2980.6 2.52495 0 0 0.727567 0.45876 
IPM3C07V   1782.47 -1.97754 2980.6 2.52495 0 0 0.727567 0.45876 
MHC3C08H 5006.89 3.45412 856.768 -0.16704 0 0 0.759623 0.522437 
IPM3C08H   5006.89 3.45412 856.768 -0.16704 0 0 0.759623 0.522437 
IPM3C11V   533.17 -1.22738 3960.65 3.13558 -178.288 -0.439734 1.04742 0.675235 
IPM3C12H   2863.36 3.5097 1528.95 -1.91525 -411.104 0.497332 1.11394 0.710287 
IPM3C16H   5107.75 2.39168 1684.61 -1.58651 0.00273287 -9.17184e-06 1.4764 0.843045 
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Figure 3. Beta-functions and dispersion a) and betatron phase advances b) for Hall C transport line. 
 
 Let M be the transfer matrix for vertical motion between two BPMs. Then we can write that the 
position and angle at BPM2, y2 and θy2, are bound with the position and angle at BPM1, y1 and θy1, by the 
following equation 
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where βy1, βy2, αy1 and αy2  are beta-functions and their negative half-derivatives at BPMs 1 and 2, µy  is 
the betatron phase advance between BPMs 1 and 2. Expressing θy1  through y2 and y2  from Eq.(2) we 
obtain 

θ y

y M x
M1

2 33 1

34

=
−

  ,         (3) 

Substituting Eq.(3) into Eq.(1) we express the effective beam emittance through BPM measurements 

ε β α γy y y

y M y
M

y M y
M

y y=
−







 +

−







 +1

2 33 1

34

2

1
2 33 1

34
1

22 .   (4) 

Taking into account that the noises of different BPMs are not correlated and are equal for both BPMs, 

y y xBPM1
2

2
2 2= = , and substituting matrix elements in Eq.(4) we finally obtain 

ε
β β µy

y y

BPM

y

x
= +











1 1

1 2

2

2sin
�      (5) 

Substituting the beta-functions and the betatron phase advance from Table 3 we obtain � EMBED 
Equation.2  � Error! Objects cannot be created from editing field codes. =0.024 nm for xBPM   = 
20 mm. 
 Now we consider an accuracy of the extraction of energy, beam position and angle from BPM 
measurements. The beam displacements due to energy change and due to horizontal betatron motion are 
coupled at IPM3C12 due to non zero dispersion at its location. To simplify calculations we will use an 
approach different from considered above. Expressing beam displacement through effective emittance, 
and momentum error we can write down where m is the betatron phase advance bx1, bx2 and bx3  are the 
beta-functions at corresponding BPMs, m1 and m2 are the betatron phase advances between BPM1 and 
other two BPMs, and,  

Performing matrix inversion, N M= −1 ,  and taking into account that D1 = D3 = 0 we obtain 

X
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x
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. (8) 

The same as for vertical motion we take into account that the noises of different BPMs are not correlated 

and are equal for all three BPMs, x x x xBPM1
2

2
2

3
2 2= = = . Performing averaging we obtain 

expressions for the accuracy of the energy measurement, 
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 and for the accuracy of the effective emittance measurement, 
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As one has to expect for the case of zero dispersion at BPMs 1 and 3 Eq.(10) is similar to Eq.(5) for the 
vertical motion. Substituting the beta-functions, the dispersion and the betatron phase advances from 

Table 3 we obtain ε x =0.017 nm and ∆p p2 / =5.9⋅10-6   for  xBPM   = 20 µm. As follows from Eqs.(9) 

and (10) the optics is close to be totally optimized: sin2µ2=0.957 (desired value - 1.0), sin2(µ1+µ2)=0.187 
(desired value - 0.0), sin2µ1=0.629 (desired value - 0.0), β2/β1  ≈  β2/β3  ≈ 0.56 (desired value β2/β1  ,β2/β3  

<< 1); that results that a loss in energy resolution is about 20% ( ∆p p2 / ≈  1.22 xBPM/D 2). 

 Thus, we can conclude that to reach the required level of stabilization we need the effective BPM 
resolution better than 20 µm.  

3. Frequency response of the feedback system 
 For simplicity we will consider at the 
beginning the frequency response of scalar 
system (one input - one output). As can be 
shown later this consideration can be easily 
generalized for the case of the considered 
feedback system. The scheme of the system is 
shown in Figure 4. The feedback system 
measures the error on its output y(t) and 
corrects its input signal x(t) so that they are 
related by following equation 

 y t x t c t( ) ( ) ( )= +  , (11) 
where c(t) is the value of the correction. The 
measurement of the system output signal are performed with errors ∆yn.. 
 We will neglect delays in the system and we can write in frequency domain 

x x t x e

y y t y e

c c t c e

t Tn
n n

i t

n n
i t

n n
i t

n

n

n

n

≡ =

≡ =

≡ =

=

( )

( )

( )

,
ω

ω

ω
ω

ω
ω

 ,    (12) 

where T is the sampling time. Let us denote the system transfer function in frequency domain 

K
y
x

( )ω ω

ω

=  ,     (13) 

and the system amplification 

G
c
y

( )ω ω

ω

=  .     (14) 

Then performing Fourier transform for Eq.(11), 

 Figure 4. Scheme of the scalar feedback system. 
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y x cω ω ω= +  ,     (15) 

  
and using Eqs.(13) and (14) we obtain 

K
G

( )
( )

ω
ω

=
−

1
1

 .     (16) 

 To determine the effect of BPM noise on the feedback system we will consider the system with zero 
signal on its input. Then using Eqs.(14) and (15) we can write that  output signal is 

y G y yω ω ωω= +( )( )∆   ,     (17) 

where we took into account that the measured signal is   y yω ω+ ∆ . Solving this equation relative to yω 

and substituting G(ω) from Eq.(16) we obtain 
( )y K yω ωω= −( ) 1 ∆   .     (18) 

The spectral density of the noise does not depend of frequency and on frequency interval ω∈[0, π/T] is 
equal to 

∆ ∆y
T

yω π
2 2=   .     (19) 

where ∆y2 is the rms error of the measurement. Then the spectral density of noise on the system 

output is equal to 

y
T

K yω π
ω2 2 21= −( ) ∆   .    (20) 

That determines the rms error at the system output to be equal to 

y y
T

K d
T

2 2 2

0

1= −∫∆
π

ω ω
π

( )
/

  .   (21) 

One can see that if  K(ω)=1  then the measurement noise does not affect the system output but at the same 
time the feedback system does not suppress the input signal. Thus, we can conclude that to minimize the 
effect of noise measurements one needs to design the system so that  K(ω) would be close to one at 
frequencies where spectral density of the input signal x(t) is sufficiently small. 
 As an example of such a system we consider the system with recursive digital filters at zero 
frequency and the first three power line harmonics. We will choose its transfer function as follows  
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where ω0  is the power line frequency, and k0 , k1 , k2 and k3  are the gains (fudge factors) for the 
corresponding harmonics. The plots of this function for sampling rates of 1.8 kHz and 4.8 kHz are shown 
in Figure 5. The gains were chosen to fulfill the requirements listed in Section 2. They also determine the 
minimum sampling frequency of 1.8 kHz1  which allows to get 20 db suppression at frequency of about 30 
Hz. It is important to note that an increase of the sampling frequency significantly decrease the effect of 

noise measurements so that y y2 2/ ∆ decreases from 1.45 at 1.8 kHz to 0.615 at 4.8 kHz. Figure 6 

shows relative contribution of different frequencies into the output signal of the feedback system. 

                                                             
1 This does not imply that sampling frequency cannot be smaller than 1.8 kHz. It rather gives an estimate of the sampling 

frequency which can be smaller for more advanced algorithm. 
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Figure 5. Dependence of the module of the feedback system transfer function, K( )ω , on frequency;  

a) - 1/T = 4.8 kHz, k0  = 0.35,  k1  = 0.03,  k2 = 0.01, and k3= 0.03, K(π/T)=1.30, 
b) - 1/T = 1.8 kHz, k0  = 1,  k1  = 0.09,  k2 = 0.04, and k3= 0.1, K(π/T)=2.52. 

 
 Although a higher order digital filter allows one to decrease the sampling frequency to reach 20 db 
suppression at region 0-70 Hz the one has to pay for this by additional increase of feedback system noise. 
The transfer function for the second order system which transfer function is square of the transfer 
function described by Eq.(22) is shown in Figure 7. For sampling frequency of 900 Hz we obtain 

y y2 2/ ∆ = 3.782 what is 6 times larger than for 4.8 kHz. 
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Figure 6. Dependence of relative contribution of  measurement noise, K( )ω −1 2
, on frequency for parameters 

presented in Figure 5; left - 1/T = 4.8 kHz, right - 1/T = 1.8 kHz. 
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Figure 7. Dependence of the module of the feedback system transfer function, K K2
2( ) ( )ω ω= , on frequency;  1/T 

= 0.84 kHz, k0  = 1,  k1  = 0.1,  k2 = 0.05, and k3= 0.1, K(π/T)=6.645. 
 
 To build the numerical algorithm for the filter described by Eq.(22) we will use the standard recipe. 
Substituting eiωT in Eq.(22) by z (rewriting it as the z-transform) and expanding products in the nominator 
and denominator we obtain 

K z
y
x

b z

a z

n

n

k
k

k

k
k

k

( ) ≡ = =

=

∑

∑
0

7

0

7   ,        (23) 
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where a7 = b7 = 1 and expressions for other coefficients are given in Appendix. Taking into account that 

that y z yn k
k

n+ =    and   y z yn k
k

n+ =   we obtain from Eq.(23) 

a y b xk n k
k

k n k
k

+
=

+
=

∑ ∑=
0

7

0

7

  ,        (24) 

Substituting  xk  as  x y ck k k= −    in Eq.(24) we obtain 

( )a b y b ck k n k
k

k n k
k

− + =+
=

+
=

∑ ∑
0

7

0

7

0   .       (25) 

This equation determines correction on each step as weighted sums of previous six corrections and 
previous six measurements 

c b a y b cn k k n k
k

k n k
k

+ + −
=

+ −
=

= − −∑ ∑1 6
0

6

6
0

6

( )   .       (26) 

where we took into account that  a7 = b7 = 1. Figure 8 shows the response of the feedback system to the 
60 Hz signal appeared at time t=0. The theory predicts that the signal has to be damped for time tdamp ≈ 
T/k1 =  7 ms which is in reasonable coincidence with the results exhibited in Figure 8. Note that the initial 
fast change is due to the strong damping at zero frequency (k0=0.35). 

0 5 10 15 20 25 30 35 40
1

0

1

time, ms

 

 
Figure 8. Time response of the feedback system described by Eq.(26) to the 60 Hz signal: dotted line - input signal, solid 

line - output signal; 1/T = 4.8 kHz, k0  = 0.35,  k1  = 0.03,  k2 = 0.01, and k3= 0.03, K(π/T)=1.30, 
 

4. Frequency response and stability of a real feedback system 
 Now we can consider how the real system operates. In this case values shown in Figure 4 become 
vectors. Let  

r
x  and 

r
y and   be  vectors representing the beam states on the system input and output, so 

that 

r
x

x t
x t
y t
y t

p t p

=
′

′

( )
( )
( )
( )

( ) /∆

  ,        (27) 

and 
r
c is vector of corrections. The same as in Eq.(11) we can write that r r r

y x c= +   .         (28) 
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Taking into account our limited knowledge of the system we introduce vector  ~yn   representing the 

estimate of the system state based on BPM measurements 
~Yn  at step n, 

~ ~Y y Yn n n= +M ∆
r

  ,       (29) 

where M is the design matrix which relates the BPM measurements and the system state, and ∆
r

Yn  is the 

BPM noise. We also introduce the matrix which relates the system state and the actual beam 
displacements on BPMs r rY yn n= ~M   ,       (30) 

Then using Eqs.(29) and (30) we can write 
~ ( ~ )y y Yn n n= −−M M1 r r

∆   ,      (31) 

For the ideal system M M E− =1 ~
and Eq.(31) relates 

r
y  and ~y within accuracy of  the BPM 

measurements. Our knowledge of the correction system is limited as well. Therefore we introduce the 
vector of estimated correction (calculated by computer), ~cn  , which is related to the actual correction by 

the following equation rc cn n= B ~   .       (32) 

 
 Then for the case of actual system we can rewrite Eq.(26) as 

~ ( )~ ~c b a y b cn k k n k
k

k n k
k

+ + −
=

+ −
=

= − −∑ ∑1 6
0

6

6
0

6

  ,      (33) 

which represents the algorithm of the feedback system. Substituting Eqs.(31) and (32) we obtain 

( )B M M M B−
+

−
+ −

−
+ −

=

−
+ −

=

= − − −∑ ∑1
1

1
6

1
6

0

6
1

6
0

6r r r r
c b a y Y b cn k k n k n k

k
k n k

k

( )
~

∆   .      (34) 

Multiplying this equation by B and using Eq.(28) we obtain the equation which relates the input and output 
system states 

( ) ( )r r r r r r
y x b a y Y b y xn n k k n k n k

k
k n k n k

k
+ +

−
+ −

−
+ −

=
+ − + −

=

− = − − − −∑ ∑1 1
1

6
1

6
0

6

6 6
0

6

( )
~

B M M M ∆   .     (35) 

Regrouping addends we finally obtain 

( )[ ]r r r r r
y x b a b y b a Y b xn n k k k n k k k n k k n k

k
+ +

−
+ −

−
+ − + −

=

− = − − − − +∑1 1
1

6
1

6 6
0

6

( )
~

( )BM M BM ∆ .    (36) 

For the case of the ideal system, BM M E1− =
~

, and zero noise all degrees of freedom in Eq(36) are 
decoupled and we obtain five scalar equations which are similar to Eq.(24). 
 To find the transfer function of the system we put  

r r

r r
x x e

y y e
n

i t

n
i t

n

n

=

=
ω

ω

ω
ω

 .     (37) 

Then we obtain the transfer function for a real system 

( )

r r
y x

e b e e b a b ei T
k

i Tk

k

i T
k k k

i Tk

k

ω ω

ω ω ω ω

=

= +






 − − −








=

−

=

−

∑ ∑

K

K E BM M E7

0

6
7 1

0

6 1

( )
~ .      (38) 

The first term in the brackets is equal to the denominator in Eq.(23) and, consequently, has the same 
zeros. It means that the feedback system will perfectly suppress the signal at desired frequencies even for 
the case when the transfer matrices are known with finite accuracy. The transfer function at other 
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frequencies will be affected by the system nonideality. The Figure 9 shows an example of the system time 

response to the 60 Hz signal. The product BM M1− ~
 for this figure was modeled as  

BM M E R1− = +
~

 ,    (39) 
where E is the unit matrix, and R is the matrix which elements are random numbers with the uniform 
distribution in the interval [-.025, +0.25]. Numerical simulations for different series of random numbers 
showed that the picture in Figure 9 represents a typical behavior of the transfer function and we can 
conclude that the deviation of the transfer function from the design is about relative error of the transfer 
matrix. It determines that the required accuracy of the transfer matrix knowledge is about 10-20%. Note 
that for higher value of the system gain the requirements will be harder. 
 Another important technical limitation which affects the system performance is the accuracy of the 
sampling time. The interference of sampling errors and the high frequency signal produces additional 
noise on the system output. The numerical simulation exhibits that a jitter in a sampling time of 30 µs 
produces the noise from the signal of the third power line harmonic with amplitude of about 3% of the 
harmonic amplitude, That determines that the sampling accuracy has to be better than 30 µs. 
  An estimate of the system susceptibility to the BPM noise we will perform for the ideal system. In 
this case as it was pointed out at the end of Section 2 the energy and position resolution of a single 

measurement is   ε x =0.017 nm   and  ∆p p2 / =5.9⋅10-6   for  xBPM   = 20 µm. Taking into account that 

for the feedback system considered above the real beam displacement is smaller than its estimate in a 

factor of  0.615 (see Section 3) we finally obtain  ε x =0.007 nm   and  ∆p p2 / =3.6⋅10-6. This values 

will not be changed significantly if the machine optics is known with 5-10% accuracy.  
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Figure 9. Frequency response, K(f), for non-ideal feedback system. a) solid line - response for the ideal system, other lines 
- K11 , K22 , K33 , K44  and K55 ; b) solid line - response for the ideal system, top dotted line - K11 , other lines - 
K12 , K13 , K14  and K15 . 
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Appendix. Formulas for calculation of the digital filter coefficients. 
 
Λ r 1 Re Λ 1  
Λ r 2 Re Λ 2  
Λ r 3 Re Λ 3  

Nom= ...( )λ 1 λ2 ..2 Λ r 1 λ 1 λ2 ..2 Λ r 2 λ 1 λ2 ..2 Λ r 3 λ 1  

b

1
.2 Λ r 1 1 .2 Λ r 2

.2 Λ r 3

.2 Λ r 3 3 ..4 Λ r 1 Λ r 2
..4 Λ r 2 Λ r 3

.2 Λ r 1
.2 Λ r 2

..4 Λ r 1 Λ r 3

.4 Λ r 3
..4 Λ r 1 Λ r 3 3 ..4 Λ r 1 Λ r 2

..4 Λ r 2 Λ r 3
.4 Λ r 2

.4 Λ r 1
...8 Λ r 1 Λ r 2 Λ r 3

3 .4 Λ r 3
...8 Λ r 1 Λ r 2 Λ r 3

..4 Λ r 2 Λ r 3
..4 Λ r 1 Λ r 3

..4 Λ r 1 Λ r 2
.4 Λ r 2

.4 Λ r 1

.2 Λ r 2
.2 Λ r 1 3 ..4 Λ r 1 Λ r 2

..4 Λ r 2 Λ r 3
..4 Λ r 1 Λ r 3

.2 Λ r 3

1 .2 Λ r 3
.2 Λ r 1

.2 Λ r 2

1

 

 
q 0 1 k 0 
q 1 1 k 1 
q 2 1 k 2 
q 3 1 k 3 
Λ k 1

.q 1 Re Λ 1  
Λ k 2

.q 2 Re Λ 2  
Λ k 3

.q 3 Re Λ 3  

Denom= ...λ q 0 λ 2 ..2 Λ k 1 λ q 1
2 λ2 ..2 Λ k 2 λ q 2

2 λ 2 ..2 Λ k 3 λ q 3
2  

D 0
.q 2

2 q 3
2 ...2 q 0 Λ k 2 q 3

2 ...2 q 0 Λ k 1 q 3
2 ...2 q 0 q 2

2 Λ k 3
....8 q 0 Λ k 1 Λ k 2 Λ k 3

...2 q 0 Λ k 1 q 2
2 ...2 q 0 q 1

2 Λ k 3 

D 1 D 0
...2 q 0 q 1

2 Λ k 2
...4 q 1

2 Λ k 2 Λ k 3
...4 Λ k 1 q 2

2 Λ k 3
.q 1

2 q 3
2 ...4 Λ k 1 Λ k 2 q 3

2 .q 1
2 q 2

2 
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a

...q 0 q 1
2

q 2
2

q 3
2

..q 1
2 q 2

2 q 3
2 ....2 q 0 Λ k 1 q 2

2 q 3
2 ....2 q 0 q 1

2 Λ k 2 q 3
2 ....2 q 0 q 1

2 q 2
2 Λ k 3

..q 0 q 1
2

q 2
2 ....4 q 0 Λ k 1 Λ k 2 q 3

2 ..q 0 q 2
2

q 3
2 ....4 q 0 Λ k 1 q 2

2 Λ k 3
...2 Λ k 1 q 2

2
q 3

2 ...2 q 1
2

q 2
2 Λ k 3

...2 q 1
2 Λ k 2 q 3

2 ....4 q 0 q 1
2 Λ k 2 Λ k 3

..q 0 q 1
2

q 3
2

.q 2
2

q 3
2 ...2 q 0 Λ k 2 q 3

2 ...2 q 0 Λ k 1 q 3
2 ...2 q 0 q 2

2 Λ k 3
....8 q 0 Λ k 1 Λ k 2 Λ k 3

...2 q 0 Λ k 1 q 2
2 ...2 q 0 q 1

2 Λ k 3
...2 q 0 q 1

2 Λ k 2
...4 q 1

2 Λ k 2 Λ k 3
...4 Λ k 1 q 2

2 Λ k 3
.q 1

2
q 3

2 ...4 Λ k 1 Λ k 2 q 3
2 .q 1

2
q 2

2

..2 Λ k 2 q 3
2 ..2 q 2

2 Λ k 3
...8 Λ k 1 Λ k 2 Λ k 3

...4 q 0 Λ k 2 Λ k 3
.q 0 q 3

2 ...4 q 0 Λ k 1 Λ k 3
.q 0 q 2

2 ...4 q 0 Λ k 1 Λ k 2
.q 0 q 1

2 ..2 q 1
2 Λ k 3

..2 Λ k 1 q 3
2 ..2 Λ k 1 q 2

2 ..2 q 1
2 Λ k 2

..4 Λ k 2 Λ k 3
..4 Λ k 1 Λ k 3 q 1

2 ..2 q 0 Λ k 1
..2 q 0 Λ k 2

..2 q 0 Λ k 3 q 2
2

q 3
2 ..4 Λ k 1 Λ k 2

q 0
.2 Λ k 1

.2 Λ k 2
.2 Λ k 3

1

 

 
 


