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Stochastic Cooling with Schottky Band Overlap1 
Valeri Lebedev, FNAL 

Abstract 

Abstract. Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate for 
Tevatron Run II. Good understanding and characterization of the cooling is important for the 
optimization. The paper is devoted to derivation of the Fokker-Planck equations justified in the case 
of near or full Schottky base overlap for both longitudinal and transverse coolings.  

Introduction 
The Schottky band overlap compromises the performance of stochastic cooling. 

Therefore all practical cooling systems are designed and built to avoid the band overlap. 
Nevertheless, operating cooling systems are frequently used in a regime when bands are 
close to overlap or slightly overlapped. In this case the band overlap needs to be taken 
into account if detailed description of the cooling is required. The stochastic cooling 
theory with no band overlap is well developed [see Ref. 1 and 2 and included 
bibliography]. In this paper we extend this theory to the case of arbitrary band overlap. 
First, we derive expressions for the beam permeabilities of the longitudinal and 
transverse coolings and, then, proceed to derivation of the Fokker-Planck equations 
describing transverse and longitudinal coolings. 

1. Beam Permeability for Longitudinal Cooling 
 Usually, a calculation of the beam permeability is based on azimuthal harmonics. 

It does not work well if bands are close being overlapped because the amplitudes of the 
harmonics are changed within one revolution. In this paper we limit ourselves to the case 
of the beam with sufficiently small 
intensity so that the beam interaction with 
vacuum chamber could be neglected. That 
allows us to reduce the problem from one 
of finding the entire ring distribution 
function to one of finding the local 
distribution functions in the pickup and 
kicker. Figure 1 depicts a layout of the 
cooling system. Let ( )txf ,1  be the 
distribution function immediately after the 
kicker, ( )txf ,2  be the distribution function 
in the pickup, and ( )txf ,3  be the 
distribution function just before the kicker. Taking into account that the particle 
momentum is changed only in the kicker one can write the equations binding up these 
functions: 

                                                 
1 This paper represents an extended version of the paper presented for COOL-2005 conference, Galena, IL, 
USA, Sep. 2005. 
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Figure 1. Schematic of longitudinal 
cooling system.
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Here 00 /)( pppx −=  is the relative momentum deviation, T1, T2 and 210 TTT +=  are the 
kicker-to-pickup, pickup-to-kicker and revolution times for the reference particle, 

2/1 γαη −=  is the slip factor, 1η  and 2η  are the partial kicker-to-pickup and pickup-to-
kicker slip factors so that 22110 TTT ηηη += , and )(tpδ  is the particle momentum change 
by the kicker. Expressing the distribution function through its equilibrium value and the 
perturbation, 3,...1),,(~)(),( 0 =+= ktxfxftxf kk ,  and leaving only the first order addend 
in the Taylor expansion of the third equation in Eq. (1) one obtains: 

( ) ( )
( ) ( )

( ) ( ) .
)()(,~,~

,)1(,~,~
,)1(,~,~

0

0
31

2223

01112

dx
xdf

p
tptxftxf

xTtxftxf

xTtxftxf

δ
η

η

−=

+−=

+−=

      (2) 

We will look for a solution in the form ti
kk exftxf ω
ω )(~),(~

=  and tieptp ω
ωδδ =)( . 

Substituting these equations in Eq. (2) we obtain: 
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Excluding )(~
1 xf ω  and )(~

3 xf ω  from the above equations we obtain: 
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Let the momentum kick be determined by the sum of amplified pickup signal and an 
external harmonic perturbation so that: 
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Here the term 2Tie ω−  takes into account the delay in signal propagation from the pickup to 
the kicker, 2)(~),(~

222
TiepfTtpf ω

ω
−→− . The total system gain, ( )[ ]0)(1, TieAxG ωωω −− , is 

chosen so that it would describe both Palmer and momentum cooling. For Palmer cooling 
A(ω) = 0 and the pickup signal depends on the particle momentum due to non-zero 
dispersion in the pickup. For filter cooling the pickup signal does not depend on particle 
momentum, ( ) ( )ωω GxG →, , and the cooling signal is formed by the notch 
filter, 1)( ≈ωA . Its delay is equal to the revolution time for the reference particle, T0. 
Taking into account the distribution function normalization, ∫ = 1)(0 dxxf , and 
introducing the impedances of pickup, Zp , and kicker, Zk , so that the pickup voltage is 

∫= dxxfxZIU ppickup ),(),( 20 ωω ωω
  ,     (6) 

and the energy gain in the kicker is 
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we obtain that the system gain is: 

( ) )(
)(),(

, 22
0 ω
γβ

ωω
ω K

Zmc
ZxZeI

xG
ampl

kp=   .     (8) 

Here I0 is the beam current, Zampl = 50 Ω is the impedance of power amplifier, K(ω) is the 
total electronic amplification of the cooling system, c is the speed of the light, e and m are 
the particle charge and mass, and β and γ are the relativistic factors. 

Substitution Eq. (5) into Eq. (4) yields: 
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Dividing both addends by  )1()1( 2211 xTixTi ee ηωηω +−+ − , multiplying them by ( )ω,xG  and 
integrating we obtain: 
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where  
( )∫ ′′′= ωωω ,)(~

2 xGxfxdS .       (11) 

Solving Eq. (10) relative to Sω we finally obtain the system response at the pickup 
location due to the external harmonic perturbation: 
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where ε(ω) is the beam permeability   
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In the above equations the rule to traverse the poles, +→ 0δ , follows from the fact that 
for the complex Laplace transform ω is shifted to the lower complex plane.  

Far away from Schottky band overlap the exponent in the denominator of Eq. (13) can 
be expanded near revolution harmonic, δωωω += 0n , 00 /2 Tπω =  and we arrive to the 
standard formula for the permeability[1]:  
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To find the closed system response we need to restore in Eq. (12) two missed factors. 
They describe the pickup-to-kicker delay, 2Tie ω− , and the notch filter. That results in:  
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The response of the open system can be obtained from Eq. (14a) by setting ε(ω)=1. 

2. Beam Permeability for Transverse Cooling 
Similar to the method used above for the longitudinal cooling the beam evolution is 

considered at three points: (1) after kicker, (2) in the pickup, and (3) before the kicker. 
The layout of the system is presented in Figure 2. The beam dipole moment at each point 
is  
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Here f0(x) is the distribution function over 
momentum, and yk(x) is the average 
transverse beam displacement for particles 
with relative momentum deviations equal 
to x. Normalizing the beam displacements, 
yk(x), and angles, θk(x), by the beta-
functions so that kkk yy β/~ =  and 

kkkkkk x βαβθθ /~
+= one can write the 

system of equations binding up the beam 
displacements after and before the kicker:  

( ) ( ) ( )
( ) ( ) ( ) .)1(,~)()1(,~)(,~

,)1(,~)()1(,~)(,~

01013

01013

xTtxxcxTtxyxstx

xTtxxsxTtxyxctxy

ηθηθ

ηθη

+−++−−=

+−++−=
  (16) 

Here ( ))(2cos)( xxc ξνπ += , ( ))(2sin)( xxs ξνπ += , ν is the betatron tune, and ξ is the 
tune chromaticity. Passing the kicker changes the beam angle but does not change beam 
coordinate so that 
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We look for a solution in the form ti
kk exytxy ω
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it into Eqs. (16) and (17) we obtain: 
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Solution these equations relative to )(~
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Taking into account the relationship between coordinates and angles of points 1 and 2,  

Uext  y2 2θ

T2  2 2 η ξ ν1

T1  1 η ξ ν1 1

y3 3θ
y1 1θ

Pickup

Kicker

K( )ω

 
Figure 2. Schematic of transverse 
cooling system. 
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and transforming the time dependent values in Eq. (16) to their Fourier harmonics we 
obtain for the beam displacement in the pickup 
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Here ( ))(2cos)( 2,12,12,1 xxc ξνπ += , ( ))(2sin)( 2,12,12,1 xxs ξνπ += , 2πν1 and 2πν2 are the 
betatron phase advances between pickup and kicker so that ννν =+ 21 , and ξ1 and ξ2  are 
the partial tune chromaticities so that ξξξ =+ 21 .  

Similar to Eq. (5) the beam kick is determined by the sum of amplified pickup signal 
and an external harmonic perturbation so that: 
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We introduce the impedances of pickup, Zp⊥, and kicker, Zk⊥, so that the pickup voltage is 
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That yields that the system gain is: 

( ) )(
)()(

22
0 ωββ
γβ

ωω
ω K

Zmc
ZZeI

G kp
ampl

kp ⊥⊥
⊥ =   ,    (25) 

where βp and βk are the beta-functions in the pickup and kicker.  
Substituting Eq. (22) into Eq. (21) we obtain: 
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The solution is similar to the solution carried out in the previous section. The result is:  
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where the beam permeability is: 
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and the rule to traverse the poles is determined similar to the Eqs. (12) and (13). 
Far away from Schottky band overlap the cosines in the denominator of Eq. (28) can 

be expended near betatron sideband, δωωνω ++= 0)(n , 00 /2 Tπω =  and we arrive to 
the standard formula for the transverse permeability[1]:  

Far away from Schottky band overlap the cosines in the denominator of Eq. (28) can 
be expended near betatron sidebands, 0)( ωνω ±=± nn , 00 /2 Tπω =  and we arrive to the 
standard formula for the transverse permeability:  
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where ±± −= nn ωωδω . 
To find the closed system response we need to restore in Eq. (27) the missed factor 

describing the pickup-to-kicker delay, 2Tie ω− . That results in:  
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The response of the open system can be obtained from Eq. (29a) by setting ε⊥(ω)=1. 
 

3. Fokker-Planck Equation for Longitudinal Cooling 
Evolution of the beam longitudinal distribution function is described by the Fokker-

Planck equation: 
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The drag force is created by the particle self-interaction and therefore is not directly 
affected by the band overlap but it is suppressed by screening of the particle signal. The 
result is well-known[1]: 
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Here G1(x,ω)=G(x,ω)/N is the single particle gain, N is the particle number in the beam 
and ε(ωn) in the denominator takes into account particle screening[3] (see Eq. (12)). 
 Similar to the drag force the particle diffusion can be considered as a single particle 
effect. First, we relate D(x) to the growth rate of momentum spread for initial point-like 
momentum distribution, f(x) = δ(x-x0). Multiplying Eq. (30) by (x-x0)2 and integrating one 
obtains: 
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Second, we consider the single particle diffusion due to kicker noise. Let the particle 
energy at turn n be equal to δEn = eU(nT), where T is the particle revolution period, and 
U(t) is the kicker voltage. Then energy spread after Nr turns is: 
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where KA(t) and PA(t)  are the correlation function and the spectral density of kicker 
accelerating voltage so that  
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Comparing Eqs. (32) and (33) and taking into account dependence of revolution period T 
on the momentum and the relationship between the relative energy and momentum 
deviations one obtains:  
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where we neglected difference between T and T0 in the denominator, and took into 
account the relationship between the kicker accelerating voltage and the voltage of power 
amplifier, )(/)()(

2
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 The spectral density of the kicker noise consists of two contributions. The first one is 
related to the noise of electronics at the exit of power amplifier, PUnoise, and the second 
one is related to the particle noise. The beam current shot noise for non-interacting 
particles is equal to:  
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Taking into account the cooling system amplification and the Schottky noise suppression 
by the particle interaction we obtain an expression for the diffusion coefficient: 
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After simplification it yields: 
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where the same as for in Eq.(31) ( )xnxnn ηωωω −=≡ 1)( 0 . 

4. Fokker-Planck Equation for Transverse Cooling 
Natural variables for transverse cooling description are the action-phase variables (I, 

ψ). We determine the action so that  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
++= 2

2
2 1

2
2
1 yyI

y

y
yy β

α
θαθβ   ,        (39) 

where βy and α y are the beta- and alpha-functions of the ring. We assume that there is no 
x-y coupling in the lattice, and the cooling is linear in betatron amplitude, which, in 
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practical terms, means that the electronics is not saturated and the pickup has linear 
response across its aperture. That yields that the beam distribution function can be 
described by the following equation: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

+
∂

∂ ⊥
⊥⊥⊥

⊥

I
fI

I
xDIf

I
x

t
f )()(λ   .       (40) 

Here ),,( tIxff ⊥⊥ ≡  is the distribution function normalized so that ∫ =⊥ )(),,( 0 xfdItIxf  

and the same as above ∫ = 1)(0 dxxf , λ⊥(x) is the cooling decrement, and D⊥(x) is the 

diffusion coefficient.  λ⊥(x) and D⊥(x) do not depend on I because of system linearity on 
the transverse coordinate y. 

Similar to the longitudinal cooling the transverse cooling is created by the particle self-
interaction and therefore is not directly affected by the band overlap but is still affected 
by the screening. To find the cooling decrement, first, we consider a single particle 
damping. Introducing the ring transfer matrix, M = M1 M2,  and the partial kicker-to-
pickup and pickup-to-kicker transfer matrices, M1, M2, and using the normalized 
transverse coordinates introduced in Section 2 we can write the total ring (pickup-to-
pickup) transfer matrix in the following form: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+−
+

=+=+=
⊥

⊥

)2cos()2cos()2sin(
)2sin()2sin()2cos(

11

11
121 πνπνπν

πνπνπν
G
G

tot GMMGMMM    .    (41) 

Here we also took into account that the angle change in the kicker is proportional to the 
particle displacement in the pickup:  

 
pickuppickuppickupkic

xx
GxG

x
⎥
⎦

⎤
⎢
⎣

⎡
≡⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⊥⊥ θθθδ
δ

~
~

~
~

0
000

~
~

11ker

G  ,  (42) 

and G⊥1 is the system gain. Damping of the cooling system is determined by the eigen-
values of the total ring transfer matrix, Mtot. The eigen-values are: 

( ))2sin(1
2

)2sin()2cos(
2

)2sin()2cos( 21

2
1

1
1

12,1 πνπνπνπνπν ⊥⊥⊥ −+⎟
⎠
⎞

⎜
⎝
⎛ +±+=Λ GGG   . (43) 

Taking into account that the single particle gain is small, 11 <<⊥G , and leaving only 
linear term in Taylor expansion of Eq. (43) one obtains: 

.1,
2

1 1
212

2,1
2 <<⎟
⎠
⎞

⎜
⎝
⎛ +≈Λ ⊥

−⊥± Ge
i

Ge ii νπνπ      (44) 

That yields the damping decrements of both transverse modes are expressed by the same 
equation: 

( ) .1,Reln2 1
2

12,12,1
2 <<≈Λ−= ⊥

−
⊥ GeiG iνπλ     (45) 

Here factor of 2 takes into account difference between damping decrements for the 
amplitude and the action. Expending particle signal in Fourier harmonics and summing 
their effect on the particle motion we finally obtain[1]: 

( )
( ) ( ))()1(,Re1)( 0

21

0

222 xxne
G

i
T

x n
n

ixTi

n

n n ξνηωω
ωε
ω

λ νπηω +−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

∞

−∞=

−

⊥

⊥
⊥  , (46) 
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where ( ) ( ) NGG /1 ωω ⊥⊥ =  is the single particle gain, ( )ωε⊥  takes into account screening 
of the particle field, and the term xTi ne 22ηω  takes into account changes of the particle 
arrival time to the kicker. 
 The diffusion coefficient is obtained similar to Eqs. (32) – (35). That yields: 

( )∑
∞

−∞=
⊥ =

n
n

k P
T

xD ωπβ
θ2

02
)(  ,         (47) 

where ( )ωθP  is the spectral density of the angle kicks produced by the kicker. ( )ωθP  
consists of two contributions: the spectral density of amplifier noise, P⊥Ua(ω), and the 
amplified shot noise of the beam. The shot noise of the beam at the pickup is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−−
+

= ∑
∞

−∞=

⊥
⊥ )(

)(1)(
)(

0

0

0
2

0

222

m
mf

m
N

T

yZe
P

m

p
Up ηξω

ωνω
ηξω

ω
ω  ,     (48) 

Substituting Eq. (48) into Eq. (47), taking into account particle screening and using 
definition of the single particle gain we obtain: 

( ) ( )

( )

∑ ∑
∞

−∞=

∞

−∞=
⊥⊥

⊥

⊥

⊥

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

++−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n m
nnU

ampl

nkk

n
m
m

xmnmf

T
NxIGP

Zmc
Ze

T
xD

ηξ
ηξ

ηξ

ωω
γβ
ωπβ

ωε 0

2
1

2

222
0

2 2
)()(

2)(
1)(

, (49) 

where ∫ ⊥= IdItIxfxI ),,()( is the average action for given momentum deviation x.  

 For the case of non-overlapping bands the above equation can be simplified[1]: 
( ) ( ) .)(

2
)(

)(
2)(

1)(
0

2
1

2

222
0

2∑
∞

−∞=
⊥⊥

⊥

⊥

⊥ ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n
nnU

ampl

nkk

n
n

xf
T

NxI
GP

Zmc
Ze

T
xD

ηξ
ωω

γβ
ωπβ

ωε
 (50) 
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