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Abstract

Abstract. Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate for
Tevatron Run Il. Good understanding and characterization of the cooling is important for the
optimization. The paper is devoted to derivation of the Fokker-Planck equations justified in the case
of near or full Schottky base overlap for both longitudinal and transverse coolings.

Introduction

The Schottky band overlap compromises the performance of stochastic cooling.
Therefore all practical cooling systems are designed and built to avoid the band overlap.
Nevertheless, operating cooling systems are frequently used in a regime when bands are
close to overlap or slightly overlapped. In this case the band overlap needs to be taken
into account if detailed description of the cooling is required. The stochastic cooling
theory with no band overlap is well developed [see Ref. 1 and 2 and included
bibliography]. In this paper we extend this theory to the case of arbitrary band overlap.
First, we derive expressions for the beam permeabilities of the longitudinal and
transverse coolings and, then, proceed to derivation of the Fokker-Planck equations
describing transverse and longitudinal coolings.

1. Beam Permeability for Longitudinal Cooling

Usually, a calculation of the beam permeability is based on azimuthal harmonics.
It does not work well if bands are close being overlapped because the amplitudes of the
harmonics are changed within one revolution. In this paper we limit ourselves to the case
of the beam with sufficiently small
intensity so that the beam interaction with L, — — \fs(\x’t)
vacuum chamber could be neglected. That y Kick\r\\ff (1)
allows us to reduce the problem from one N\t
of finding the entire ring distribution ‘
function to one of finding the local
distribution functions in the pickup and
kicker. Figure 1 depicts a layout of the Pickup:

. N
cooling system. Let f(x,t) be the f2(>/(,t)\r- T
- - - - . . —_ 1 1
d!strlbutlon function lm_meQIat(_er after _the Figure 1. Schematic of longitudinal
kicker, f,(x,t) be the distribution function cooling system.

in the pickup, and f,(x,t) be the

distribution function just before the kicker. Taking into account that the particle
momentum is changed only in the kicker one can write the equations binding up these
functions:
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f, (th) = fl(x’t T, (@+ 771Xo)) !

f,(x,t)= f,(x,t=T,(1+7,%)) , (1)

f(xt)= fo(x=p(t)/ po,t))
Here x=(p—p,)/ p, is the relative momentum deviation, T,, T, and T, =T, +T, are the
kicker-to-pickup, pickup-to-kicker and revolution times for the reference particle,
n=a-1/y* is the slip factor, », and 7, are the partial kicker-to-pickup and pickup-to-
kicker slip factors so that nT, =#»,T, +7,T,, and Jp(t) is the particle momentum change
by the kicker. Expressing the distribution function through its equilibrium value and the
perturbation, f, (x,t) = f,(x)+ Fk (x,t), k =1,...3, and leaving only the first order addend
in the Taylor expansion of the third equation in Eq. (1) one obtains:

F2()(11:): E(th—Tl(lJr?hXo)) '
f~3(X,t)= Fz(x’t_T2(1+ﬂzx)) ' (2)

fc)= 7y (t) - 2O Gl
p, dx
We will look for a solution in the form f, (x,t)= f,, (x)e'* and &p(t)=dp e .
Substituting these equations in Eq. (2) we obtain:

f~2w (X) = Fla) (X)exp(_ Ia)-l-l (l+ 771X) !

f~3a) (X) = f~2(u (X)exp(_ |Cl)T2 (1 + 772 X) ’ (3)
= = df, (x
fu)= Tl - T30 P
Excluding ﬂw(x) and ﬂw(x) from the above equations we obtain:
sz (X)exp(i ol (1+ 771X) = an) (x)exp(— T, (1+n, X) - %% 4)
0

Let the momentum kick be determined by the sum of amplified pickup signal and an
external harmonic perturbation so that:

D, py= Idx F0 (G (X, @)™ [L - A(@)e ™™ |+ AP, / Py - (5)
Here the term e ™ takes into account the delay in signal propagation from the pickup to
the kicker, T,(p,t-T,) > f,,(p)e ™. The total system gain, G(xa)L- A(w)e ™" |, is
chosen so that it would describe both Palmer and momentum cooling. For Palmer cooling
A(w) = 0 and the pickup signal depends on the particle momentum due to non-zero
dispersion in the pickup. For filter cooling the pickup signal does not depend on particle
momentum, G(x,w) — G(w), and the cooling signal is formed by the notch
filter, A(w) 1. Its delay is equal to the revolution time for the reference particle, To.

Taking into account the distribution function normalization,j fo(x)dx =1, and
introducing the impedances of pickup, Z, , and Kicker, Zy , so that the pickup voltage is

U sigap, = 10| Z, (4, @) 5, (x @)dx (6)
and the energy gain in the kicker is



dz =€ Zk—(w)u kicker, ! (7)

kic ker,
! Zampl
we obtain that the system gain is:
Glx, )= Dol 2@ (8)
7ﬂ mc Zampl
Here lg is the beam current, Zamp = 50 €2 is the impedance of power amplifier, K(w) is the
total electronic amplification of the cooling system, c is the speed of the light, e and m are
the particle charge and mass, and fand yare the relativistic factors.
Substitution Eg. (5) into Eq. (4) yields:
]?Zw(x)[eiwn(lmlx) _ oM (1+nx) ] +

_ _ ~ 9

dfo(X)|:Apeth +e"“’T2[ZI.—A(a))e_'”T° ]Idx’fZQ(X')G(X’,w) -0 ( )
dx Po

Dividing both addends by "R _g 00 - myltiplying them by G(x,) and

integrating we obtain:

S + Apexta) Idfo(x) G(X’ a))dx

2]

P dx ein1(1+mx) _ e—in2 (L+17,X)
(10)
y y df, (x) G(x, )dx
ioT, ol 0 =
e [1_ A(a))e ]Sw'[ dX ein1(1+771x) _ e—inz (L+m,x) !
where
Sa} - J'dX’ fZQ(X’)G(X” 0)) (ll)

Solving Eq. (10) relative to S, we finally obtain the system response at the pickup

location due to the external harmonic perturbation:
A df ' 0T, (1+17,X)
Sm __ 1 pexta) O(X) (EI(:_( (’1?)2)6 dX , (12)
(@) Py 55, dx e -(1-9)

where g w) is the beam permeability
) 10T)175X
@) =1+ (- Apen) | Tal)_Clu ok
550, X €T —(1-0)
In the above equations the rule to traverse the poles, 6 — 0., follows from the fact that

for the complex Laplace transform e is shifted to the lower complex plane.
Far away from Schottky band overlap the exponent in the denominator of Eq. (13) can
be expanded near revolution harmonic, o =nwm, + dw, w, =27 /T, and we arrive to the

standard formula for the permeability™:
£0(60) =1+ (1- A(@)e ™) |
00,
To find the closed system response we need to restore in Eq. (12) two missed factors.
They describe the pickup-to-kicker delay, e ™™ , and the notch filter. That results in:
. 10Ty17,X
. __ 1 Apextw (l_ ,A‘(a))e—la)T0 ) I dfO (X) ici(i(a f))e
Flosed (@) p, 550, Ox € o) _(1-5)

dx . (13)

df, (x) G(x, @)
dx  27i(mnx + S/l @, —i5)

ax . (14)

dx , (14a)



The response of the open system can be obtained from Eq. (14a) by setting & w)=1.

2. Beam Permeability for Transverse Cooling

Similar to the method used above for the longitudinal cooling the beam evolution is
considered at three points: (1) after kicker, (2) in the pickup, and (3) before the Kkicker.
The layout of the system is presented in Figure 2. The beam dipole moment at each point
is

|
dk(t)=$ [yt fo(9dx , k=123, (15)
Here fo(X) is the distribution function over LR R V—]
momentum, and yi(x) is the average P Kickerh 0
transverse beam displacement for particles / \\yl !
with relative momentum deviations equal \
to x. Normalizing the beam displacements, ‘x
yk(X), and angles, é&(x), by the beta- Pickurﬁ\\\\/KU
functions so that y, =y, /B, and yze; o
o Tl nl(tvl Vl

O = O B + oy 1y B one can write the Figure 2. Schematic of transverse

system of equations binding up the beam cooling system.
displacements after and before the kicker:

%(X,t)zC(X)yl(X,t—To(l+77X))+S(X)§l(X,'[—TO(1+77X)) ,
0,(x,t) = =s(x)F, (X, t =Ty (L+7%)) + €(x)8, (x,t =T, @+ 7)) .
Here c(x) =cos(2z(v +&x)), s(x) =sin(2z(v+£&)), vis the betatron tune, and & is the

tune chromaticity. Passing the kicker changes the beam angle but does not change beam
coordinate so that

yl(x’t): yz(xvt) '
6,(x,t)=6,(x,t)+ 50 (t)
We look for a solution in the form ¥, (x,t) = ¥, (x)e'* and 56(t) = 66, e . Substituting
it into Eqgs. (16) and (17) we obtain:
Voo (%)= 00T, () + 5008, () Jexp(= iaT, 1+ 1)
., (x) = [ 500, () + 0008, () exp(-iaT, @+ 7x) 8)
yl(u (X): yaw(x) '
6,,(x)= 0, (x)+ 59,
Solution these equations relative to y,, (x) and é(u(x) yields:
~ (c(x) —exp(iaT, 1+ 7x)))exp(ioT, L+ 7x)) =
0,,(x)=— _ : 0,
exp(2iwT, (L+7x)) - 2c(x) exp(i T, (L + 7x)) +1
. (x)= | s(x)exp(iaT, (L+ 7x)) 55
exp(2iaT, 1+ 7x))— 2¢(x) exp(iwT, (L+ 7x)) +1
Taking into account the relationship between coordinates and angles of points 1 and 2,

(16)

17)

(19)




Y (1) = €, (07, (6t =T, (L+ 7))+ 5, (98, (x t =T, A+ 7,%))

0, (X’t) = _Sl(x) yl(x’t -1 @+ 771X))+ Cl(x)gl(x’t -1 @+ 771X)) '
and transforming the time dependent values in Eqg. (16) to their Fourier harmonics we
obtain for the beam displacement in the pickup

- (SZ(X) T 5, (x)e T ) ) _
wa(X)Z ezino (l+;><) _ ZC(X)eino(lH;x) 1 5950 . (21)

Here clvz(x):cos(27r(vly2 +§l’2x)), slyz(x):sin(Zﬂ(vlv2 +§112x)), 27wy and 27w, are the

(20)

betatron phase advances between pickup and kicker so that v, +v, =v, and & and & are
the partial tune chromaticities so that & + &, =¢&.

Similar to Eq. (5) the beam kick is determined by the sum of amplified pickup signal

and an external harmonic perturbation so that:
80, = [dx f5(X)¥,, ()G, (@)™ + A6 (22)

We introduce the impedances of pickup, Z,,, and Kicker, Zy,, so that the pickup voltage is

exto

U seap,, = 16251 (@)Y, = 16Z, (@) [ ¥, 00 Fo ()lx (23)
and the transverse angle obtained by a particle in the kicker is
56kic ker,, ° Z L (a)) kicker, * (24)

} mcz%Bz Zampl
That yields that the system gain is:

elyZ, (0)Z,, (o)
G, (w)= Pl K(w) , 25
(o)== ez, VPR (25)
where 3, and £ are the beta-functions in the pickup and kicker.
Substitutin(g Eqg. (22) into Eq. (21)) we obtain:
_ ~ S (X)+S (X)eZi(uTO(Pr};X) eia}Tz(l+l]2X) o, _ -
Tou0)= L e g O (@8 [0 (07,00 +47,,) - 20
The solution is similar to the solution carried out in the previous section. The result is:

v 7 10Ty (1+7x) qiaT, (1+7,X)
Vo, = [ E5(3) T, (x) =%Idx £, (5,(x) +5,(x)e Je
&) (w)

e2ia)T0 (L+mx) ZC(X)eia}TO (L+7x) + 1
where the beam permeability is:
¢ () _1 Gi(@ f le ™ sin(272(v, + &,%))+sin(27(v, + &))"
. 2 30 €os(@T, (L+7x)) - cos(2x (v + &) ) +idsin(wT, (1+7x))
and the rule to traverse the poles is determined similar to the Egs. (12) and (13).

Far away from Schottky band overlap the cosines in the denominator of Eq. (28) can
be expended near betatron sideband, o = (n+v)w, +dw, @w,=27/T, and we arrive to

the standard formula for the transverse permeability!"):
Far away from Schottky band overlap the cosines in the denominator of Eq. (28) can
be expended near betatron sidebands, w,, = (n+v)w,, o, =27/T, and we arrive to the

standard formula for the transverse permeability:

(27)

f,(x)dx . (28)



G (a)) ,[ sin(2zv,) exp(F27 v) +sin(2zv,)

& (00,,) =1+
- B 77n+§)x+5a)ni | @, —I5)Sln(27zv)

fo (x)dx

00,

2nvy=nml2 >1+G (a) ) .[ f (X)dX
(nFE)x+ 6w, [, —i6

(29)

wheredw,, = v —-o,,

To find the closed system response we need to restore in Eq. (27) the missed factor
describing the pickup-to-kicker delay, e . That results in:

—— Af [e 0 sin(27(v, + £X))+ sin(2z(v, + £x))|e’ ™

exto

Yoous = (@) 53, €08(@T, (L+7x)) - cos(2z (v + &) )+ 5 sin(wT, (1+ 7X))
The response of the open system can be obtained from Eqg. (29a) by setting &, (w)=1.

f,(x)dx . (29a)

3. Fokker-Planck Equation for Longitudinal Cooling
Evolution of the beam longitudinal distribution function is described by the Fokker-
Planck equation'
of of
—+— f D(x) — : 30
R LIEY 0
The drag force is created by the particle self-interaction and therefore is not directly

affected by the band overlap but it is suppressed by screening of the particle signal. The
result is well-known!:

)-—:—i (1 Ao, e ™ e ™ o, =na,L-nx) . (31)

Here Gi(x,@)=G(x,w)/N is the smgle particle gain, N is the particle number in the beam
and &(an) in the denominator takes into account particle screening™ (see Eq. (12)).

Similar to the drag force the particle diffusion can be considered as a single particle
effect. First, we relate D(x) to the growth rate of momentum spread for initial point-like
momentum distribution, f(x) = 8(x-xo). Multiplying Eq. (30) by (x-Xo)® and integrating one
obtains:

d v 2 Of 2 0 .
e X 0) = [l Zrae= =[x ) S (RO P 5 [ ) GX(D( )&j (32)

= 2[(x= X JF () f (X)x+ [ f (x)(D(x) +(X— xO)Z—S)dXM) D(X)

Second, we consider the single particle diffusion due to kicker noise. Let the particle
energy at turn n be equal to 6E, = eU(nT), where T is the particle revolution period, and
U(t) is the kicker voltage. Then energy spread after N, turns is:

N, -1 2 N, -IN, -1 ZIN, -1
:(eZU(nT)J =e Z ZU(nT)U (mT)=e Z ZK (n-m)T)
n=0 n=0 m=0 n=0 m=0
N, <IN, -1 o plo™, _ 2 o
=Y Y [P(@)e " Mdo=e? [P, () Y gy, 2N, ZPA(Z—”nj
n=0 m=0_y —o | | T n=-o T



where Ka(t) and Pa(t) are the correlation function and the spectral density of Kicker
accelerating voltage so that

(t)= TPA(a))ei“‘da) . (34)

Comparing Egs. (32) and (33) and taking into account dependence of revolution period T
on the momentum and the relationship between the relative energy and momentum
deviations one obtains:

27 © |Zk(a) )
T (8tme? f i Zans |

where we neglected difference between T and T, in the denominator, and took into
account the relationship between the kicker accelerating voltage and the voltage of power

amplifier, P, () =|Z, (0)/ Zpy| R, (@).

The spectral density of the kicker noise consists of two contributions. The first one is
related to the noise of electronics at the exit of power amplifier, Pynoise, and the second
one is related to the particle noise. The beam current shot noise for non-interacting
particles is equal to:

p@)=N N 5L 1 f(ka%——w] | (36)
2 7Ty 2 w|k77| Kk,
Taking into account the cooling system amplification and the Schottky noise suppression
by the particle interaction we obtain an expression for the diffusion coefficient:

D(x) = P (@,) , (35)

ampl

27e? < 1 Z |\

D(X): 2 o\ 2 | Zk( I:)Unoise (a)n)

TO (]/ﬁ mcC ) n=—oo|€(a) ‘ ampl ‘ (37)

B0 s | EN S L (—( "X)n]
‘ ampl 27Z-T0 k= —oo|k77| 77k
After simplification it yields:
2

D(X)= Z 1 . 271'6 PUnonse( n) Zk(a)n) +

(o, V]| 7,2 (82me? ) | Zanw ‘ (38)

ot a5 ()

where the same as for in Eq.(31) o, = o, (x) = naw,(1—7x).

4. Fokker-Planck Equation for Transverse Cooling

Natural variables for transverse cooling description are the action-phase variables (I,
). We determine the action so that

1 2
:%(ﬂy02+2ayy0+ +ﬁay yzl : (39)

y

where 4 and ay are the beta- and alpha-functions of the ring. We assume that there is no
x-y coupling in the lattice, and the cooling is linear in betatron amplitude, which, in



practical terms, means that the electronics is not saturated and the pickup has linear
response across its aperture. That yields that the beam distribution function can be
described by the following equation:

of, 0 o, of

L+, (X)=(If )=D, (X)=| | == . 40

L2005 01)-0.00 515 (0
Here f = f (x,1,t) is the distribution function normalized so that J.fl(x, I,t)dl = f,(x)

and the same as above I f,(x)dx =1, A,(x) is the cooling decrement, and D,(x) is the

diffusion coefficient. A,(x) and D, (x) do not depend on | because of system linearity on
the transverse coordinate y.

Similar to the longitudinal cooling the transverse cooling is created by the particle self-
interaction and therefore is not directly affected by the band overlap but is still affected
by the screening. To find the cooling decrement, first, we consider a single particle
damping. Introducing the ring transfer matrix, M = M; M,, and the partial kicker-to-
pickup and pickup-to-kicker transfer matrices, M;, M, and using the normalized
transverse coordinates introduced in Section 2 we can write the total ring (pickup-to-
pickup) transfer matrix in the following form:
cos(2zv)+ G, sin(2zv,)  sin(2zv) 11
—sin(2zv)+G,, cos(2zv,) cos(2zv)| (4)

Here we also took into account that the angle change in the kicker is proportional to the
particle displacement in the pickup:

X 0 0 O0fx X
~ = = ~ = G ~ y (42)
60 kicker Gilx pickup GLl 0]l ¢ pickup 0 pickup

and G, is the system gain. Damping of the cooling system is determined by the eigen-
values of the total ring transfer matrix, M. The eigen-values are:

M, =M,(M, +G)=M+M,G {

Ay, = cos(27rv)+GuMi\/[cos(z7zv)+Gll Mj +(@1-G,,sin(27v,)) . (43)

Taking into account that the single particle gain is small, G, <<1, and leaving only
linear term in Taylor expansion of Eq. (43) one obtains:

A, ze+2’”[1+Gz—l_1e2””2) , G,<<1 . (44)

‘ i

That yields the damping decrements of both transverse modes are expressed by the same
equation:

A, =-2InA, |~ ReliG e 2™) , G, <<l . (45)
Here factor of 2 takes into account difference between damping decrements for the

amplitude and the action. Expending particle signal in Fourier harmonics and summing
their effect on the particle motion we finally obtain™:

A, (X) = %n_i_m Re(i iil((;)n)) gl R ] o Wy =0y (n(l_ ) — (v + fX)) , (46)



where G,,(w)=G, (w)/N is the single particle gain, ¢, (@) takes into account screening

of the particle field, and the term e'™>”* takes into account changes of the particle
arrival time to the kicker.
The diffusion coefficient is obtained similar to Egs. (32) — (35). That yields:

_ " 47
DL (X) 2T02 n:Z_OOPH(wn) ! ( )

where P,(w) is the spectral density of the angle kicks produced by the Kicker. P,(w)

consists of two contributions: the spectral density of amplifier noise, P ua(w), and the
amplified shot noise of the beam. The shot noise of the beam at the pickup is

b 262|ZpL(a))|2FN i 1 f(a)o(m—v)—a)J ’
@, (& +nm)

48
1Up (C()) _I_02 ~ (00|§ + 77m| ( )

Substituting Eqg. (48) into Eq. (47), taking into account particle screening and using
definition of the single particle gain we obtain:

) f(m—n+(§+nm)xJ
< 1 7B, e‘zki (a)n] 2 @ N < &+nm ) (49)
Dl (X) - n:z*x“gj_ ((()n )‘2 2TOZ [mczﬂzyzampl J PLU (w” )+ ‘Gu (w”)‘ 2TO mgoo ‘5 + Um‘

where | (x) :J' f (x,1,t)Idl is the average action for given momentum deviation x.
For the case of non-overlapping bands the above equation can be simplified!):

D, (x)= i ! [ﬂﬂk ( e‘ZkL(wn} ] Py (wn)‘*"GLl(a)n)‘z <I(X)>N ) ] . (50)

e (@) | 2T (MC* B s 2Ty [¢+m|
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