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Abstract

The temperature distribution in the antiproton source target as a result

of the heating by the proton beam is calculated for typical values of the
transverse beam size.
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In this note I present the calculation of the temperature distribution in the copper
target as a result of the heating by the incident proton beam. In particular, I consider the
temperature distribution in a copper disc of given thickness (= the length of the target)
and infinite radius which is initially at the room temperature and at ¢ — 0 hit by 1.72x 1012
120 GeV protons.

The heat capacity at constant pressure of copper is Cp = a + (b x 1073)T where the
coefficients are usually given in units cal/g mole and have values a = 5.41 and b = 1.5,
The total energy deposited is equal to the integral of the heat capacity over the range of
temperatures — here from the room temperature (298°K) to the temperature T' to which
the given volume element is heated:
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where A = 1678.78. ‘
On the other hand, € can be numerically evaluated by using simulation codes, from
the knowledge of the beam spot size o, the number and the energy of the incident protons

and the copper atomic weight. In Fig. 1 results of a calculation of C. Bhat (1] for a target
of 7 cm length are shown for two different beam spot sizes.

For the values of € of Fig.1 the corresponding values of temperature are obtained by
solving Eq. (1) for T
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Here, € has to be expressed in cal/g mole in order to obtain T in °K. For copper (atomic
weight 63.55), 1GeV /g = 2.43 x 10~ %¢cal/g mole.

The energy deposition numbers of Fig. 1 translate now into the temperature distri-
bution of Fig. 2. Because of axial symmetry the temperature is a function of z and r only.
This is the temperature distribution at time # — 0. The temperature distribution T(r,z,1)
at later times must then be computed from the heat equation
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for the given initial distribution. This obviously can only be done numerically and can be
quite tedious. I want to show now that the results of interest can actually be obtained
analytically by replacing the original problem with a soluble one.

First, note that the z—component of the temperature gradient (Fig. 2) is much smaller
than the radial one. This is in particular true for small r, which is the hottest region in
the target and therefore the most interesting one. By neglecting the z—component of the
temperature gradient, we simplify the problem considerably. T(r, z,t) becomes just T(r,t)
and Eq. (3) simplifies to .
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For the front (z = 0) surface of the target the radial temperature distributions are given
in the histograms of Figs. 3 and 4. The next step is to realize that these distributions can
be closely approximated with the Gaussian one which is the natural distribution for the
heat equation. The Gaussians shown in Figs. 3 and 4 are 1118¢™"" and 2090e=237".
The solution of Eq. (4) with the inita] 6—function heating, i.e. T(r,0) = N&(r) is

T(r,t) = N —r?/ant ' (3)
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where k = k/Cp, k the thermal conductivity, C' the heat capacity and p the density. For
copper k = 1.16 cm? /sec.

All that remains to be done is to determine N and t = ¢, such that T(r,t,) equals
the Gaussians of Figs. 3 and 4. The physical meaning of this trick is that the temperature
distributions of Figs. 3 and 4, although in reality being created instantaneously at ¢ = 0,
can be thought of as originating from a §—function heating Né(r) at time ¢ = —¢,. The
temperature distributions at any time ¢ is then obtained from Eq. (3) by simply replacing ¢
by o +t. For o = 0.15mm (Fig.3), N = 489°K mm? and to = 300usec and for ¢ = 0.10mm
(Fig.4), N = 152.7°K mm? and ¢, = 90pusec.

The temperature distributions for ¢ = 0, 0.05, 0.1, 0.2, 0.3 and 0.5 msec are shown
in Figs.5 (¢ = 0.15mm) and 6 (¢ = 0.lmm). At the core (r = 0), the temperature as a
function of time is

335.5

T0,t) = ~——F7——° f =0.1
(0,1) 03+ ffmsed K for o =0.15mm,
and 188
1) = ° =0.1 .
T(0,¢) 0,00+ ffmsed] K for ¢ =0.lmm
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Fig. % Energy density distribution in the 7cm long target for
beam spot sizes (a) 0=0.015cm and (b) 0=0.010cm. Data only up

to r=70/2 is shown.
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Fig. 2 Equitemperature lines for the
energy deposition of Fig.1. é o N
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