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Bumps and aperture in the Accumulator

L. Rinolfi

A brief description is given from a theoretical point of view for the formula
used to create a local bump. This is general and can be applied to any machine.

Bumps: The purpose is to create a local deformation somewhere in the machine
without pertubing the rest of the closed orbit.

We can achieve this through several means.
= Trim dipoles
~ Shunts on dipoles
- Moving the quadrupoles
One creates a pertubation (angle @,) at point A and another one (angel 8,) at
point B which cancel the previous effects. If there are several betatron

oscillations.between A and B which is often the case, then we can use three or
four (or more!) magnets.

Transfer matrix through any section

According to the solution of the equation of motion, we know that the
transfer matrix between point A (s,) and point B, (s,) is

%f (cos W21 + a, sin ¥,,) Y BB, sin ¥,

—_— [(1 + ax?z) sin ¢21 +(a,~a;)cos W21] =4 (cos ¥,,=a, sin ¥,,)
. \/82

. @

8 and o being the Twiss parameters and y,, the phase advance between 1 and 2.



Let us assume:
X; = position of beam at point i

X'; = angle of beam at point i

Approximations used

Fig 1

. The deflection angle A8 =_é§&_ is small compared to the bending angle 6.
Then we can consider the dipole a8 a thin magnet. At the entrance plane, the
angle is 0 and at the exit plane it becomes 6 (first order approximation).

| Bumps with 3 dipole magnets

Fig 2
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Entering plane 1, we have (§9

[+

Exiting plane 1, we have {%;)
1

igo’in B (8) %il)out =(§J (2)

1 2

These are the vector values according to the kick given in plane 1 by the
bend B1. We continue, writing the vector value,s in the other 2 planes. If M,,
is the transfer matrix between 1 and 2, we have:

-

(i((%z in = M21(§%1) (§ JOUt =(§%2) * (gz) (3)

(i‘:u} in = Maz{';(?s) Px(fs) out

3 3

= {;(?»)*. ga) (4

' .
The vector (ﬁ':) should be equal to zero for a local bump. Using (2) and (3) to

develope (4), we obtain

Ll

Equation (5) becomes

0] 0 0 0
( ) = M;, My, ( ) + M, { ) + ( ) (6)
0 8, 8, B,

0 0 0 0
( ) M;, ( ‘) + My, + (
0 o, e,

Take the coefficients of the matrix equation (1), we find,

Mo [ My, (%1

G e (8] 1+ (2] 5)

8, o,

(7)

8,
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for position

0 =06,VY8,8; sin ¢, * B,¥B,B; sin y;, . (8)

and for angle

B,
0 =8, ’—— (cos ,, - agsiny,,) + 8, (9N
Bs
Then we can derive
B, sin v,
@, = -6, | — - (10)
B, sin y,, ‘
B, s8in ¥,, -
and 8, = 8, | = =—— (1)
Bs sin y,, -

At the point 2, the position and angle of the beam are

X2 = ©, V8,8, sin ¥,, (12)
B,

x', =68, |— (cos ¥,, » a, sin ¥,,) (13)
B, |

According to which type of magnet we create the pertubations with, we must
fine the relationship between A8; and the current variation AI (in amps) for trims
and shunt dipoles or between A8, and the displacement Ad (in mm) for quadrupoles.

uN&

AB, = —mmmm Al for dipoles (s
g(Bp)

A6, = K& Ad for quadrupoles (15)

% effective length of magnet (m)
U permeability (H/m)

N mumber of turns

g gap of dipole {(m)

Bp rigidity (m)
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K strength of quadrupole (m—-2)

Examples of bumps in the Accumulator

Using the vertical trims A2 V9, A2 V6, A2 V6 we have

Magnet (m=1) stﬁength By(m) by {(rad)
A2vV9 =0.2744 18.227 11.673
A2V6 0.14902 23.991 12.861
A2V6 0.26409 22.403 15.183

The Angle 6, for + 1 mm of displacement in A2V6 is,

8, = (16)
8, = 0.651 mrad

8, = + 0.022 mrad

6; = 0.059 mrad

The characteritics of these trim vertical magnets are:

N = 720
2 = 0,254 m (10")
g =0,114m (4.5")
p =29 T.m (290 kg.m)

B

With these characteristics, we found

AT = 14,42 Aei
‘ an

by applying relationship (14).

That means for 1 mrad, AI should vary by approximetely 15 A.



Bumps with 4 dipoles magnets
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By applying the same method as for 3 bumps, we obtain:

(Xo)
vt
X o in
1

o

‘Xa ) X2 (O )
= ‘ ) +
X'algue  'X'e O,
2
Xs) (x“) {O )
= +
X' s out X'u B,
3
(x7 ) (Xs ) (0 )
=j +
X' out X'e o,
4
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(18)

(19)

(20)

(21)



For a closed orbit and local bump, we must have

MEN

0 r 0 0 0 0

( ) My (Maz [Ma, ( ) ( ) ( ¢ ( ) (23)
0 8, 8, 8, 8,
0 0 0 0 0

( )= Mus M32 MZI ) + Mloa Maz( ) + M'-rs ( ) + ) (2)")
0 8/ 0, 8, 8,
0 0 0 0 10

= M“( ) + Mu( ) + M,,s( ) +( ) . (25).
0] 8, e, e, 8,
The Equation for position gives
0,YB,:By sin y,, *+ 6,B,8, sin Y,, *+ 6,88, sin Y, = O (26)

The Equation for angle gives:

B.
6, |~ (COS Yy — a, Sin Whl) + 6,
B

(27)

eliminating (B8,in (26) and by looking at the coefficient of a, in (27)
which is the same as (26), we can deduce:
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8, /E: sin y,, + 8,Y8, sin v,, + 8,VYB, sin y,; = O W (28)

and 61\/81 cos Y,; * 6,\/B, COS Y,, *+ B,YBs COS Y5 + 0,8, = O (29)

-

These equations are the conditions to get a local bump for a given closed orbit.

Another approch has been made by R. E. Peters starting from equation (24). We
multiply it by [M,, M,,]-'. Then we get

(o) -~ (0 ) +(‘0 ) . tMsz]_l (:) + [M,, ]~ (:k) | (30)

We obtain for position and angle respectively the following equations:

9,7Y8, Si’n Y2, = B3B8 sin ¢, - BB, 8in y,, = O (31)

and e,y'é',— cos Y,, *+ 62\/62 + 8,8, cos Y, + EB.,\IKB.+ cos P,, = 0 (32)

It is easy to go from (31) (32) to (28) (29) and vice versa. If we multiply
(31) by (cos v¥,,) and (32) by (sin ¥,,) and add both, we get exactly, equation

(28)
. 1 1
If we multiply (31) by &g{ cos Vy,,) and (32) by Sgr sin ¢,,) and
N

subtract both, we get exactly, equation (29). We also can calculate the beam
position and angle at the entrance of each plane 2, 3, U according to the transfer
matrix M,,, M;, and M,,;.



Calaculation of 0's in general case

Let y, be the beam displacement in dipole 2 and y, in dipole 3. From
equations (18) and (19) we find

X2 = Y2 = 8y8,8, sin y,,

Y2
8, = (33)

\/B,B, sin y,,

From equation (20), the beam position in dipole 3 is:
Xu = ¥s = 0, ¥B,8; sin ¢,, + 8,B,B8; sin y;, (34)

8, and y,; being known, we can calculate 8, from (34). However we can express it
as function of y, and y,. Then

6. = -_l%:_fff V21 ~gF% sin ¥y, (35)
2 = d

......

Jg; sin y,, 8in y,,

From equation (28), we can calculate 6, as a function of 8, and 8,. We can also
give an expression with y, and y;.

J@f‘ in Y., B
63 = — e - ™ (36)
{E: 8in Y3, sin y,,

7

sin ¥y,

A
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From equation (29), we can calculate 6, as a function of ©,, 8, and 8;. We give
also an expression with y, and y,.
We find
Ys
8, = (37)

B3B, sin Y,

This is a confirmation of recipocity with respect to the beam direction.
Equation (37) is the reciprocal of equation (33). If y, = O in (35) and (36), we
find again (10) and (11).



"

Bump at arbitrary point "C" (between 2 and 3)

X , 0 0
(c)+Mczx)=Mcz[M“")+()] (38)
x'c X's 8/ 8

X

(c = Mc, o) +Mcz(o) (39)
X' 8, 8,

The equation for position is:

Xo = 8,818y 8in Yo, *+ 8,BaB, sin g, (40)

The equation for angle is:

(41)

At point C it is then possible to have either a pure displacement bump (X'c = 0)
or a pure angular bump (xC = 0).
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Pure orbit displacement (x'c = 0)

From (41), we can find 6, as a function of €,, and from (40) we can find the

position X, as a function of 8,:

cos - i
B1 Vo1 = Qg sin ¥,
8, = =8, |~ — e Mt

B ©OS U,, - a, sin y,,

v abiali L LLGULG

because sin (wc1 = Yp2) = 8in ¥,

From (28), we find 6, and from (29) we find 8,.

After sumplification:

sin y,, (cos ¥, + a, sin ¥,.)
V = Tea c c
63= vy 3 ” T i
sin Y., (cos Voo - a, sin ¥,,)
By sin y,, (cos Y3 _ + a_ sin y,.)
c ! ¢
8, =8, |—

B, sin y,; (cos ¢ - o sin Vo2)

cel Lk LA LA D RLAL Db iz

(42)

(43)

(45)

(4u)



Pure orbit angle (xc = 0)

From (40), we can find 8,as a function of 8, and from (41), we can find the
angle X', as a function of ©,:

B, sin wcl
8, =-6, |- — (46)
B. sin L
and 1 81n Y,
X'y = -9, ‘F- (47)
Bo sin y,,
As before, from (28) and (29), we get
B. sin ¢,, sin wuc
8, =6, |— (48)
B, sin ¥,; sin wcz
B, sin ¢,, sin wsc
B, = -6,/ — = (49)
. B, sin ¢,; sin ‘pcz

where sin (Y, - ¥u,) = - sin ¥, has been used for simplication.



14

Bump with 3 quadrupoles

We consider the general case shown on figure 4. If a quadrupole is focusing
in the horizontal plane then it is defocusing in the vertical plane. We must
specify in the figure which plane is considered. We can apply equations (2) to
(7)
where 8, is replaced by X, d,

62 \i " " " K2 dz
63 " " " " KS da

K, and X, being negative for a focusing qradrupole in the horizontal plane.

Equation (7) becomes:

0
) (50)

We can develop this matrix equation or we can replace ai by K;d; in equation (10)
to (13). )

v

vertical

. \
2T A R
T P 32
Ql Q. <3
B, £, By
Xo X1 X2 X3 Xu Xs

Fig 4. Quad displaced in vertical plane

ITRERIIN 5 U H vl b alllll R el bk Dialibo Bl AT b i b



We find

15

K, 1 8in Yy,
d, = -d, —|— (51)
Kz B2 sin Va2
K, [By, sin ¥,
d; = d, — |— (52)
Ky NB;  sin y,,
At the quadrupole 2, the position and the angle of the beam are:
X2 = K,d, yB8,8, sin y,, (53)
1
X'2 = K,d, ""' (cos y,, - a, sin y,,) (54)
B2
\ R Y 1
\ - ;
- k\‘ <7 g
g ! o
¢ |
d, ! 4 4 Lo 4 |
! 3 Ra . N 3
‘ 4 A
% X A% x5 | o
e ] , 4
Fig 6. : }:‘ﬂ.ﬁ
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then computed from the TPOT generated Twiss parameters of the lattice.
The fractional part of the tune of a given particle for a given turn is then
calculated from the phase advance from the previous turn.

Figures 1-15 are y tune distributions for runs with different values of the
Neutralization factor N. Each particle has been weighted by its “emittance”
with the whole distribution then renormalized to the total number of parti-
cles. This distribution should then be like the power distribution that one
gets from a spectrum analyzer of a transverse Schottky signal. The beam
current is 100 mAmp and the emittance is 2r mm-mrad. Figures 16-30 are
semilog plots of the same distributions. All figures have a bin size in tune of
0.0002 unless noted on the plot. Table 1 summarizes the mean and variance
of these distributions.

Table 2 summarizes the means, peaks, and maximum tunes of these dis-
tributions. The peaks are my estimation of what they are. The maximums
are determined by integrating the histograms until the given percentage (ei-
ther 99% or 99.9%) of total is reached. Figures 31-34 are plots of these tunes
versus the Neutralization factor N.

The averages appear to be linear in N. The peaks are not as nice. The dis-
tributions are non-Gaussian and asymmetric with an increasing tail at higher
tune and an increasing width as N increases. Estimating the peaks without
fitting to a known distribution is therefore, given the statistics, somewhat
subjective. Also given the distributions the peaks need not be linear in N.

The maximums appear to be linear above N = 0.20. Below that one gets
into the smear caused by the momentum distribution and the discreetness of
the calculation. The two maximums also have different slopes. The question
therefore arises what is the true “maximum”. Equation 4 of the introduction
gives a value of 0.0399.

But how do these slopes vary with the Current I and the Emittance E?
Table 3 and Figure 35 show how they vary with the Current I. Table 4 and
Figure 36 show how they vary with the Emittance E. As can be seen, the
slopes are linear with the current I and with 1/E as expected from Equation
4,

[ T T = T s e e m i i



Application to the Accumulafor

Consider the 3 quadrupoles

We want a bump 1 mm up in A1Q2

. Thus, %, = 1mm

A1Q1  (Q,)
A1Q2  (Q,)
A1Q3  (Q,)

Q, Q. Qs
K(n2) 0,361 -0, 361 0,360
8 (m) 17,96 32,64 13,41
] 0,9374 0,9973 1,0872
Yy = 0,0899 Yy, = 0:1“98 ¥, = 0,0599
d; = 1,91 mm
d, = 2,36 mm
d;, = 1,48 mm
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Bumps with 4 quadrupoles

As before, we can apply equation (25) for 4 quadrupoles where © i1s replaced
by Kd

-0 -0 0 -0 0
( )M ( )M ( )M ( ) ( ) (55)
O Kldl szz K3d3 Kd

sy

The Equation for position gives

K,d, VBB, Sin Yy, * Kod, yB.B. sin ¢,, + Kyd; ¥BaB. 8in ¢,5 = O

K.,d, ESin Voo + Kod, VB, sin ¥, , + K,d, V—B:Sin Yoy = 0 (56)

The equation for angle gives

K,d, ¥8, cos ¢,, + szz\/_B: cos ¢, * K,d, yB, cos y,, + K,d, féj 0] (57)
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Calculation of d's in the general case

Let y, be the beam displacement in quadrupole 2 and y, in quadrupole 3. From
equations (18) and (19), where ® is replaced by Kd, we find

Y. = K,d, 8,8, sin y,,

>
»
]

Y2
d, = =—— — (58)
K, yB.B, 8in ¥,

Following the same method as for the dipole, we find:

Ys . . .
L S0 Ve - sin b,

d, = , iy (59)
K, {gl sin ¥,,; sin y,,
J2 . Ja.
d, = \[B.z 81in ‘pu;'- o {B-a 31n vl«buz —- (60)
Ks JBs 8in y;, sin .,
Y3
d, = (61)

Ku BaBH sin ’«pua

R e [ e | R e Ak e e T T Tt Pt i 4 =1



19

Bump at an Arbitray Point "C" (between Q2 and Q3)

Following the same method as for the dipole, equations (40) and (41) become:

Xo = Kid; JB,B, sin Y, + K,d, JB,B, sin ¥, (62)

X'y = Kid, \/:EE- (cos yg, = a, sin ¥y,;) + Kpd, \)‘% (cos ¥y, = a, sin Yy,) (63)

All equations (U42) to (49) are the same except that we should replace 61 by

Kidq;.
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Aperture

The accumulator has been designed for an aperture of 10w mm mrad in both
planes.

However the measured acceptances are

€y = 4w  mm.mrad

E. = 57 mm.mrad

Table 1 gives the calculated aperture where possible restrictions can exist.
Taking into account the B variations at each place, there are no restrictions
according to know physical apertures. Nevertheless, we can see from table 1, the
stochastic cooling devices could limit the vertical acceptances and the Lambertson
magnet could limit the horizontal acceptance. Schottky P.U.'s could give
limitations in both planes.

An error in the alignement of these devices, or in the closed orbit or in B
values would explain these restrictions.
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Table |
Physical - Acceptance
Names Dimensions
X Y BX By Calculated
€X A
om m m m T ™
a0 | H Schottkey PU 15 15 | 8.8-16 7.2 + 17 25 > 14 31 > 13
V Schottky PU 15 15 8.8 + 16 7.2 » 17 25 > 14 31 » 13
A10
250 uwave absorbers 19 19 8.8 » 16 7.2 > 17 4 s 22 50 » 21
2,158 Dampers 8.8 » 16 7.2 > 17
A2Q16 Lambertson 18 17.46 13+ 23 7+ 8.5 5 +1 35
20 (out) |
MQ4 | Septum 29.7(im)| 19-8 | 13.9 6.6 28 60
AQI4 | Inject. Kicker 8.6 8.2
A2Q16 | Extract Kicker 15.4 15.3
AS0 RF
ARF1 4g9.15 49.15 12 27 200 83
ARF2 46 46 2 9 100 200
ARF3 ‘ 46 46 20 9 100 200
Stochastic
Cooling:
8 variations
A10 300/2 30/2 15.9 15.9 no restr. 14
A20 300/2 i 30/2 8.1 8.03 no restr. 28
A30 300/2 30/2 15.9 15.9 no restr. 14
A60 300/2 30/2 8.11 8.03 no restr. | 28
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