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ABSTRACT

Beam cooling methods developed for the accumulation of
antiprotons are being employed to assist in the performance of
experiments in Nuclear and Particle Physics with ion beams stored in
storage rings. The physics of beam cooling, and the ranges of utility of
stochastic and electron cooling are discussed in this paper.

INTRODUCTION: MIXING AND HEATING

Since we are dealing with particles circulating in storage rings,
we need to describe the properties of the orbits of the particles. We
will install devices in the ring, which the particles will pass at their
revolution frequencies f = V/C, where V is the particle velocity, and C is
the length of the orbit. If we consider particles of differing momenta
AP, then both the particle velocities and the particle orbit lengths will
differ, the latter due to the dispersion in the magnetic system which
confines the particles. There will be a spread of revolution frequencies
given by

Af/f= AV/V-AC/C=(1/¥%- 1/1t2)AP/PEnAP/P 1.1
If f0 is the central revolution frequency of the beam particles, and we
detect the beam current at frequencies in the neighborhood of nf,, where

n is an integer, then we will see a spread of frequencies
Af = nfor}AP/P 1.2

where AP/P is the fractional momentum spread of the beam. This signal
is called the nth longitudinal Schottky line of the beam. At sufficiently
high frequency, Af-f, the bands overlap, and the signal becomes

uniform in frequency.
* Operated by Universities Research Association Inc., under contract
with the U.S. Department of Energy.



In order that the particles will stay in the ring, we conf igure the
magnetic system such that particles not on their closed orbit will
oscillate about it with a "betatron oscillation”. Both the particle's
position x and its angle x' (with respect to its closed orbit) will
oscillate with a frequency Uf, If we now detect the beam position, or

more precicely its dipole moment at some location in the ring, we see,
for each particle, a periodic 5-function modulated at frequency VT,

Then the transverse Schottky bands appear at fregquencies (n:v)fo. In

most cases of interest, the magnetic structure will be conf igured such
that v is independent of P ("chromaticity" € = 0), and that the dependence
of v on betatron oscillation amplitude is small. Then the width of the
nth transverse Schottky line is just the width of the nth longitudinal
line. We now need to introduce new variables (1,0) to describe the
betatron oscillations. Let ’

|= (%2 + 2axx’ + gx2)/2, tan o= + gx'/x

x =(21g)2cos 0, x' =(21/8)"?[sin ¢ - acos q] 1.3
where (a,,Y) are the lattice parameters determined by the confinement
sustem, and are periodic functions of position s along the orbit]. The
equations of motion are

'=0, 0=1/8 1.4
We infer that v = (¢ds/g)/2.

We now inquire about beam heating, that is, we sub ject the beam
to a deflection ©(t) at some location, where © is a random function of
time and has zero mean. Then we find on each passage

81 = (2g1)"2sin 0 © +82/2, 50 = (p/21)"2c0s06 1.5
We next sum up the contributions from successive passages £ at times tn

=1, *4/7,, and 0y = 2TfgUt, +G, during a long time interval T and find the
long term rates of change dl/dt = 261y/T and di2/dt = 2(8I9)2/T for a

particle averaged over initial phases and times. We are not interested
in the changes ino. We f ind?
di/dt = gf, [P(f)df

dI2/dt = BT 22 PIf (n2v)] 16

Here P(f) is the spectral power density of © ( in the sense that 62
represents power)3. The sum is over all transverse Schottky lines. The



first moment, wide band heating, is typical of gas and target scattering,
dipole magnet ripple, etc. The second moment will be important in
stochastic cooling, where the beam itself provides noise at the
frequencies of the Schottky lines. At this point we could introduce the
Fokker-Planck equation to determine the evolution of the distribution of
betatron amplitudes, but we will wait until we have introduced the
cooling terms. The second moment term is typical of results we will
obtain, where the effect on the beam particles is obtained by adding up
the contributions of all Schottky bands in the bandwidth of the system in

question.

STOCHASTIC COOLING

Consider the arrangement shown in Fig. 1. A single particle is
circulating in a storage ring. A beam pickup detector sends its signal fo

Pickup Amplifier Kicker
Delay time T
Storage
Figure 1. Stochastic cooling system schemat i

an amplifier, which drives a dipole kicker. The time delay of the signal
T is adjusted so that it equals the transit time of a particlie with
central momentum from pickup to kicker. The betatron phase shift



between pickup and kicker is chosen to be near /2. As the particle
passes through the system on successive revolutions, it will, on the
average, receive a kick which reduces its betatron amplitude in
proportion to its amplitude. The amplitude will fall exponentially.
Amplifier noise will heat the particle at the same time, and the particle
will approach a state of equilibrum between the heating and the
cooiing4.

The pulse sent to the kicker will have a nonzero time width
because of the limited bandwidth of the system. If the particle has a
momentum differing from the central momentum, it will arrive at the
Kicker at a different time than the signal, and will receive less kick, so
its cooling rate will be reduced. The higher the bandwidth, the shorter
the pulse, and the more important the effect. This is called “bad mixing"”
or "mixing between pickup and kicker”. The effect of the high frequency
Schottky bands can be reduced or even turned into heating 69 this effect.
If we define Y(f) to be the ratio, at frequency f, of the kick © to the
dipole moment at the kicker, then we can calculate the long term rate of
change of the amplitude | of a particle due to the effect of the system
(ignoring noise). It is,

dl/dt = 1,14(p,B,)sine 2 Ycos(2mnf ALY/ 211 21

The amplitude of Y, which contains the pickup sensitivity, the amplifier
gain, and the deflection strength/volt of the kicker, has been taken to be
constant in the bandwidth. ¢ is the betatron phase shif t, the sum is over
all longitudinal Schottky lines, and B,.B, are the lattice functions at the

pickup and kicker. At is the particle transit time difference TnAP/P,
but can include unwanted amplifier phase shifts as well.

Now let us add more particles to the ring, say N of them. Each
particle will feel its own signal, and receive cooling as in 2.1. In
addition it will feel the signal of all the others,and be heated according
to 1.6. To estimate the heating, we need the power spectrum of the
Schottky signal at the kicker. To obtain this, we find the power
spectrum of the dipole moment of the beam PD at the pickup and multiply

by Y2. We find
Po() = BLIN2FI(F2uf )/n)/n(2m)2 22
The sum is over all transverse Schottky lines, J is the mean value of | in



the beam, and ¥ is the distribution function of revolution frequencies fo

in the beam. This is just the beam signal described above. As the
frequency increases, the power density decreases until the bands
overiap, and then remains constant. When all bands overiap, the
situation is called "good mixing" in the sense that a fresh sample of
beam is presented to the pickup on each revolution. We might further
comment that in most situations of interest to this audience, namely
intense beams, we can neglect amplifier noise. To get an estimate of the
combined effect of the cooling and heating we employ the Fokker-Planck
equation for the evolution of the distribution function F(1) of amplitudes.
The Fokker-Planck equation is essentially a continuity equation in which
the particle flux @ includes both the flux due to the cooling and the
diffusive flux due to the heatings.

oF/at + 28/21 = 0; & = (dI/dU)F - (dIZ/dt)aF/a1)/2 - 23
We multiply this equation by | and integrate over | to find the rate of
change of J, the mean value of |. Historically the result has been
written in the following useful wag6;

J1J=-(W/N) g - g°M/2] 2.4
Here W is the bandwidth of the cooling system, g can be interpreted as
the fractional correction applied by the system on each revolution when
it measures an apparent offset of the beam ( -gw/N is just the right
hand side of eq. 2.2), and M is the "mixing factor”. The mixing factor is
equal to one for good mixing, i.e. all bands overlap. If no bands overiap,

M=[Z fo/Afn]/“p 25

Af_is the width of the nth Schottky band and n, is the number of

Schottky lines in the bandwidth W included in the sum. Clearly M
describes the effect of frequency spreads on the ratio of the heating
term to the cooling term.

From equation 2.4 we see that optimum cooling takes place when
g = 1/M, in which case the shortest cooling time is

Topt = Z2MN/W 26

Another effect appears when systems operate near optimum gain. The
kicker signal induces coherent motion in the beam. This signal tends to
reduce the spontaneous beam signal at the pickup, and to slow down the
cooling. As a practical matter, this does not pose a much greater



limitation than the heating term, and is intimately related to it, since
both effects depend critically on the mixing. On the other hand, if the
gain is set high, and the system has fmproper phase adjustment,
instability can take place in the improperly adjusted bands.
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Figure 2. Pickup and Kicker Geometries

Concerning hardware, loop couplers of length A/4 in midband seem
to offer the maximum sensitivity for relativistic particles, although
TEM lines coupled through slots to the beam find application at lower
velocity, or in situations in which there is large signal. These pickups
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are shown pictorially in Fig. 2. Kickers tend to be the same structure,
except for power handling capability, because of a reciprocity
relationship. Special slowwave structures ( helices, lumped lines ) have
been used in experiments. The signal from many loops can be combined
to improve the signal to noise ratio. In the Tev-1 systems, the signals
of 128 loops are combined. Travelling wave tubes with octave bandwidth
have been employed for frequencies up to 2-4 gHz, and solid state
amplifiers may soon be available. Output power requirements can be
reduced by splitting the high level signal and driving many kickers.
Again, TeV-1 systems drive 128 loop couplersS.

Stochastic cooling can be employed to cool momentum spread as
well.  The principal difference is that as the momentum spread is
reduced, the Schottky heating power density is increased, and the
cooling slows down. Special filters have been employed-to shield the
beam, in frequency, from its dense core and to allow cooling of hotter
particles®.

We can use Eq. 2.6 to estimate the utility of stochastic cooling as
the primary cooling means for a ring such as the Indiana Cooler. For
high precision experiments it would be desireable to have AP/P = 1074,
sayn =.5, fy=10%Hz,N=10'", and W= 10°Hz. Then M = 20, and Topt =400

sec. The momentum cooling system to obtain Ap/p = 1074 would be very
difficult, with many pickups and kickers, which would have to be
delay-adjusted to cool different particle velocities. Nevertheless,
stochastic cooling will probably find use in such machines. As we shall
see below, cooling of large amplitudes is very slow for electron cooling
systems. Scattering from internal targets will, in some circumstances,
create a beam halo which will cause backgrounds which are
undesireable. Betatron cooling systems are being contemplated for LEAR
in which the pickup electrodes have spatially varying sensitivity so that
the system responds to the halo and not to the dense core!© Similar
systems are under study at Fermilab for the Tevatron collider, where
normal cooling systems would have cooling times of days for the intense
bunched beams. In colliders, the beam-beam tune shift provides some
frequency separation between the core and the halo. This aids the
situation, since the halo signal will not heat the core.



ELECTRON COOLING

Consider a system of spatially coincident ion and electron beams
which have the same mean velocity vectors. Of course this cannot be
true for the whole circumference of the storage ring, so we will be
speaking of what happens in some fraction n of the ring, called the
cooling region. The means for bringing the two beams together will be
discussed below. Now consider the two beams from the point of view of
an observer moving at the beams mean velocity. He will see an ion gas
and an electron gas. If the ion gas is hotter than the electron gas, the
fons will lose energy to the electrons by Coulomb collisions and tend to
come into temperature equilibrium with the electron gasI U.zKilovo]t
ions come to rest in condensed matter in times of the order of 10713 sec,
so that in an electron beam whose electron density is of order 107" that
of condensed matter, we might expect that equilibrium would come in
some milliseconds, or seconds considering the fraction n of the time the
ion is actually in the electron beam.

Since the process is Coulomb scattering, the rates will be
determined by the accessible range of impact parameters and the
relative velocities of the two species. Electron guns for this purpose
have operated in a longitudinal magnetic field of about 1 kilogauss, and
either provide a beam of constant diameter, or increase the field as the
electrons move from the cathode, in which case the beam diameter
decreases and the temperature increases. For our purposes, let us
consider a beam of 5 Amp, S cm diameter, Te = 1 eV, and kinetic energy

of 110 keV. Some important parameters are then;

density n 11Fem™
plasma frequency W, 6-10%Hz
cyclotron frequency W, 2:10'0Hz
electron L velocity By, ®V(2T /mc?) 2107
Debye length A =V(T /4mne?) 7-107%cm
electron gyroradius 0, 3-1075¢cm
minimum approach Brin 1.4107cm.

When the electrons are accelerated, their tranverse momenta, and
hence their transverse temperature, tend to remain constant or to be



regulated by the magnetic field as noted above. In the longitudinal
direction, however, the electron temperature is compressed by the
acceleration process, (AE = mvAv), and the electron parallel velocity
becomes g, = T_,,,/CP, = 3107 Then the electron velocity distribution

in the moving system is far from Maxwellian, rather resembling a disc.
For impact parameters above A the electric field of the ion is screened
by the intervening electrons. Collisions taking place for impact
parameters between Brin and g, are normal free-free Coulomb

collisions, exactly the same as those considered in stopping power in
normal matter. Collisions for impact parameters between p, and A are

adiabatic with respect to the electron gyromotion, and no momentum can
be transferred perpendicuiar to the field lines. This means that the only
electron velocity important in the collision is the parallel one, and it is
very small. If the fon velocity is small also, the cooling can be very
fast. For the nonadiabatic collisions, the electron L velocity normally
determines the cooling rates. Then there are two Coulomb logarithms
A, the nonadiabatic one of about 10, and the adiabatic one of about 3.

Space charge also contributes to the electron velocity spreads.
The space charge potential of the e-beam V = 30-1/p =200 eV causes a
spatially correlated Il electron velocity spread. The same radial
electric field, combined with the magnetic field, causes the e-beam to
rotate, typically .05-.1 rad/m.

The ion velocities are determined by the emittance and momentum
spread of the ion beam. Since the L momentum is invariant, the ion L
velocity is given by the ion angle, B,y = (BY)X. To have the same B, as the

e-beam the fon emittance would be [ (gY) =.7, lattice p=20m] e/t =
100 mm mr, which is not restrictive. In the Il direction, B, = BAP/P, s0

10° is typical. Two other transfomations between laboratory and
moving system are required by Lorentz invariance, affecting clock rates
and densities: Nrmoving = N/ Y. and At = AtmwingM. Both of these are in

the sense to reduce cooling rates as the beams become relativistic.

In order to calculate cooling rates, we must add up the momentum
tranfers of collisions of all impact parameters and all electron
velocities as an ion moves through the electron gas. There is an analogy,
for the nonadiabatic collisions, between the ion friction force due to the




electron velocity distribution, and the electric field due to a similar
charge distribution. Because of the multiparameter nature of the
process, 1t is customary to treat the Il and 1 cooling separately. For the
Il cooling, because of the disc nature of the electron distribution, the
friction force is slowly varying for Be < By < B,y and then falls as 1/gi2

for larger velocities (as does the transverse friction force). The I
friction force is a good measure of the ability to cool a beam, and to
restore energy losses due to targetry. For the above parameters, with
the fractional cooling length n = .04 we can estimate the rate of
reduction of momentum spread 8 = AP/P to be
8 = -8mnem,c?r 2An/l(m,/m )p¥2T 1 » 103Kz 3.1
For transverse cooling, when By; ¢ By, the friction force is

proportional to velocity so there is a characteristic cooling time
T =(T,,/m,c¥2y3/[2mnr r.cAn] = 12 sec 32

For smaller jon emittances the adiabatic or magnetic cooling can reduce
the cooling time appreciably. There is a substantial premium to be
gained by starting with the smallest possible emittance and momentum
spread. The magnetic friction forces are;

Fy = -8mne*An/m JIv, 2-2v,2v /v

Fy = -[6mneAn/m v, 2v,/vd 33
Here (v,v,,v,) refer to the ion velocities in the moving system, as do the

friction forces F, and the density n. A is here the adiabatic Coulomb
logarithm, equal to about 3. Note that the parallel force is zero when
the ion moves parallel to the field, and that the ion velocity vector is
first rotated to a more L direction before its magnitude is reduced.

There is no experience in the electron cooling of very intense
beams, say for more than 10° particles. One can observe, however, that
the cooling will reduce the frequency spreads in the beams and render
them susceptible to instabilities. In the past means have usually been
available to control these instabilities when they occur.

It is beyond the scope of this report to describe completely the
technological basis of cooling systems. Suffice it to say that guns for
the currents and temperatures required have been constructed, and that
newer designs incorporate significant improvements. The use of
toroidal fields to bring the ion and electron beams together works well,



and efficient electron collection systems have been built with 97%
energy recovery efficiency and 10™ electron recovery inefficiency.
Adequate methods have been developped to sweep unwanted trapped ions
from the electron beams, and suitable vacuum practices now exist to be
consistent with Tong beam storage times!3, 14,15

CONCLUSION

Modern cooling techniques are directly applicable to Nuclear and
Particle Physics Experiments utilizing cooled stored beams and internal
targets. Altogether about 8-10 cooling rings are being planned in
Europe, North America, and Asia for these purposes and for Atomic
Physics experiments.  This experimental medium promises high
resolution, low backgrounds, and adequate luminosity for many types of
experiments. To achieve all these goals, probably both electron cooling
and stochastic cooling will be required.
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