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Precision Measurement of the Accumulator Beam Energy
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l. Introduction

The Antiproton Source Accumulator has been used by Fermilab experiments E760 and
E835 to search for and measure the various states of charmonium below the open charm
threshold. Accurate determination of the resonance parameters (mass, width, and branching
ratios) of these states requires a precise measurement of the antiproton beam energy. The
purpose of thisreport isto give a detailed description of the method that is used to accomplish a
precision measurement of the antiproton beam energy.

The basic strategy is to determine the energy of the beam by a measurement of its
velocity. The energy, E, of aparticle, written in terms of its velocity parameter, S, is.

mc?
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m is the mass of an Antiproton. The velocity of a circulating antiproton is the product of its

revolution frequency and the length of its orbit, viz. ¢S = fal. Writing (1) in terms of fre, and L
gives:
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Therefore, the average velocity of the beam, and hence its energy, can be obtained by a
measurement of the beam’s average revolution frequency and orbit length.

It is apparent from equations (1) and (2) that as the beam velocity approaches the speed
of light the precision of this measurement rapidly degrades. Differentiating (2) with respect to
frev @andL gives the uncertainty in the measurement of the beam erdErgps:
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Thus, the relative uncertainty in this measurement of the beam energy grows veth
increasing energy.

The guantity of interest to the experiments using the Antiproton Source is the energy in
the center of mass reference frame. The center of mass eBgtgig, related to the laboratory
frame energyE, by:

=J2mc? rriz 4)

The uncertainty in the measurementgy is:
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Table| gives the uncertainties in E and E.y, a various energies of interest to experiments
E760 and E835 (Charmonium spectroscopy). The vaues in Tablel are calculated from
equations (3) and (5).

Tablel. Uncertainty in Beam Energy M easurement

Energy: 8 GeV v’ Resonance J/y Resonance
Stacking Energy Ecn =3686.000 MeV | Eqn=3096.880 MeV
E =6301.948 MeV E = 4172539 MeV
doE
o 1.280 MeV/Hz 0.445 MeV/Hz 0.127 MeV/Hz
E
% 1.699 MeV/mm 0.586 MeV/mm 0.165 MeV/mm
do
df—E“" 278.9 keV/Hz 113.2 keV/Hz 38.5keV/Hz
diE““ 370.0 keV/mm 149.3 keV/mm 50.1 keVV/mm

The beam revolution frequency spectrum IS measured by observation of the Schottky
noise of the beam on a spectrum analyzer The average revol utlon frequency of beam in the
Accumulator can be measured with a precision of about 1 part in 10’ (i.e. &rey= 0.1 Hz). From
Tablel, a0.1 Hz uncertainty in f.e, gives rise to an uncertainty in E¢y of less than 11 keV at the
energies below the .

The precision with which the orbit length is measured is difficult to estimate. A
reasonable estimate is A =1.2mm. This orbit length uncertainty yields a corresponding
uncertainty in Ecy, that varies from 179 keV at the Y’ to 60 keV at the J. The uncertainty in Ecy
due to the uncertainty in the orbit length is not negligible when compared to width of the narrow
resonances in the Charmonium spectrum.

1 See: M.D. Church and J.P. Marriner, Annu. Rev. Nucl. Part. Sci. 1993, 43:253-295, section 7.

Also: C.M. Ginsberg, Spectroscopy of J and ' Charmonium Resonances, Ph.D. Thesis, Northwestern University,
December 1995, sections 3.3 and 3.4.
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1. Measurement of the orbit length

The measurement of the average orbit length is accomplished by measuring the orbit
length difference between the orbit of interest and an orbit of known length. The orbit of known
length will be hereinafter referred to as the “reference orbit.”

A. The Reference Orbit

The reference orbit is obtained by decelerating antiprotons to the vicinity of a narrow,
well-measured charmonium resonance. Theadd tha)’ areideal for this purpose. The beam
is scanned in energy across the resonance and the excitation of the resonance is measured as a
function of beam energy. At each step in the scan the closed orbit of the antiproton beam is
measured® and stored. An analysis of the resonance excitation data allows an accurate
determination of the beam energy at each point in the scan. The orbit length associated with
each of the stored orbit measurements can then be calculated by solving equation (2) for L. One
of these orbits becomes the reference orbit, and its length becomes the reference orbit length

(Lrer).

There are two sources of uncertainty in a value of Lref that is determined in this manner:
(1) the uncertainty in the published mass of the resonance®, and (2) the statistical error in the
measurement of the excitation curve. The statistical error is primarily determlned by the
luminosity integrated at each point in the scan. The relatively large cross—sectlons for the Jy
and the ' are sufficient to make the statistical error very small for scans of 1 pb™ or more of
integrated luminosity.

The uncertainty in the length of the reference orbit (dL,«) is related to the uncertainty in
the resonance mass (V) by equation (5):

M res Lref
JLref ——— oM res (6)
y(pc)®

M es IS the resonance mass; yand p are determl ned by the beam energy at the resonance peak.
The Y’ mass is My = 3686.00 + 0.090 MeV/c?, WhICh yields A& = 0.6 mm. Similarly, the mass
of the Jy is given by M = 3096.88 £+ 0.040 MeV/c which yields AL = 0.8 mm.

2 A measurement of the closed orbit consists of the read out of all of the beam position monitors (BPMs) in the

horizontal and vertical planes.

% The resonance mass values and uncertainties used here are taken from the “Review of Particle Properties” (i.e. the
Particle Data Book) prepared by the Particle Data Grbtip:{/pdg.lbl.goy.

* The partial widths togp and the widths for inclusiveyi/decay are large compared to the rest of the charmonium
spectrum for the ¢/ and they’. Inclusive Jy decay (i.e. charmonium — J/ +anything), where the Jy
subsequently decaysto €'e, isasignal the E835 detector very efficiently detects.
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B. First Order Calculation of AL

Once the reference orbit and its length are established, the measurement of the length of
any other orbit is accomplished by afirst order calculation of the change in orbit length relative
to the reference orbit. Figure 1 shows the coordinate system that will be used for the
specification of the closed orbit in the Accumulator. This is a right-handed coordinate system
that is attached to and moves aong the central orbit® of the Accumulator. It is a curvilinear
system except in regions where the curvature is zero. The coordinates x and y shown in Figure 1
are the horizonta and vertica displacement of the beam relative to the central orbit.
Longitudinal motion is measured along the s coordinate.

Theinfinitesimal element of path length, dL, along any orbit in this system is given by:
dL® =dx® +dy® + (1+ K X+ /(yy)2 ds (7)

kx and ky specify the curvature (1/p) in the x-s and y-s planes respectively. There is no
significant vertical curvature in the Accumulator; therefore, the «yy term will be dropped in the
calculations that follow.
y
A

Actual Closed Orbit

P9

Figure 1. Coordinate system used to describe the motion of the beam in an accelerator. x measures the
horizontal displacement and y measures the vertical displacement relative to the central orbit.

The length of an orbit is calculated by integrating dL in equation (7) one full turn around
the Accumulator.

L= 95\/1+ 2k x+ (K, X)* + X2 + y2ds (8)

X and y’ denote the longitudinal derivativesof xandy (& and % ).

® The central orbit is defined as the trajectory that passes through the center of all of the quadrupole magnets in the
lattice.
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The closed orbit in the Accumulator is measured by a system of horizontal and vertical
pickups (BPMs) distributed throughout the Accumulator lattice. The BPM system can
accurately measure changes in horizontal or vertical beam position at the pickup locations.
However, the system is not calibrated to measure the position of the beam relative to the central

orbit. Thus, it is necessary to rewrite equation (8) in terms of quantities that can be accurately
measured.

While it is difficult to measure the displacement of an orbit relative to the central orbit,
the Accumulator BPM system is capable of accurately measuring the difference between any two

closed orbits. In particular, if one of those orbitsis the reference orbit we can define a Ax and 4y
such that:

AX=X—-X
Ay=y-vy,

X and y, are the horizontal and vertical displacements of the reference orbit relative to the central

orbit. Ax and Ay are the horizontal and vertical displacements of the orbit of interest from the
reference orbit.

(9)

In the Appendix it is shown that the first order correction to the reference orbit length is
given by:

L=L,+ TKXAxds (10)

To first order, the orbit length depends only on the horizontal displacement from the reference
orbit. Inthis approximation, distortion of vertical orbit does not affect the orbit length.
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C. Closed Orbit Distortion Model

The evaluation of equation (10) requires knowledge of Ax everywhere there is non-zero
curvature. In the Accumulator, the only significant curvature occurs in the main bending dipole
magnets. The BPMs, from which all of our knowledge of Ax is derived, are primarily located
near the quadrupole magnets in the Accumulator lattice. What is needed then, is a model of the
Accumulator horizontal orbit that relates Ax at any location in the Accumulator lattice to the
values of Ax measured at the BPMSs.

The model used for the orbit length calculation assumes that the distortion of the closed
orbit from the reference orbit can be written as a superposition of dipole kicks from all of the
possible sources of such akick. The model also alows for a beam momentum error (i.e. an error
thgt causes the beam to be radially off-center in the arcs). This superposition of kicks is written
as’

AX(S) = \/7 Z\/TH cos( ~|u(s) |)+D( )AF? (11)

where:
B(s) = Horizontal betafunction at Iongltudlnal position s
B = Horizontal betafunction at the i™ kicker
M(s) = Horizontal betatron phase at s
L = Horizontal betatron phase at the i™ kicker
D(s) = Horizontal dispersionat s
W = Horizontal betatron tune
a = Dipolekick from thei™ kicker
Ap/lp = Momentum error

The lattice parameters (i.e. 5, i, D, and 1) are obtained from a model of the Accumulator
|attice”. The parameters of the closed orbit model are the 4 and 4p/p — these must be calculated
from the BPM measurements of the Accumulator closed orbit.

The determination of thed and A4p/p is accomplished by substituting the BPM
measurement aix at each horizontal BPM fafix(s) in equation (11) and solving for the kicks.
The equation to be solved f@randA4p/p is:

Ap

AX, =My, +6, + D, — (12)

nx, is a vector of lengtiN, (where N, = number of horizontal BPMs) containing the BPM
readout of the difference between the orbit of interest and the referencégrisita vector of

® Equation (11) must be modified for those kick elements that are so long the lattice functions vary significantly over
their length (e.g. the 5 °, 10 °, and 15 ° horizontal bending dipoles). In this case, the summand in equation (11) must
be integrated over the length of the kicker element. The contribution of these elements to the sum can be written as:

P Lf " JB® costr, ~|u(9) - Ot

" The software used for the Accumulator lattice model is the CERN product MAD (Methodical Accelerator Design).
The magnetic fields and gradients required as inputs to MAD are based on magnetic measurements of Accumulator
magnets at the Fermilab Magnetic Test Facility (MTF).
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the same length containing the value of the horizontal dispersion function at each horizontal
BPM, 6, is a vector of length N¢ containing the kicks from the kicker elements. My is the
Np % Nx matrix that connects the kicks from the kicker elements to an orbit displacement at the
horizontal BPMs.

Ultimately equation (12) will be solved for 8, and 4p/p. As will soon become evident,
this must be handled as a least squares problem. Therefore, since not all BPMs are identical in
the accuracy of their readout, each of the terms in equation (12) will be weighted by the
estimated uncertainty in the BPM readout. AX,, , Mk, and Dy, become:

b. E%
J
g;
(My);
(Mbk) i = -
j

(Db)j

j

(13)

(By); ~

G; is the uncertainty in the readout of the i BPM. To avoid complicating the notation, the
normalized and unnormalized Mk and Dy, bear the same name.

From equations (11) and (13), the elements of M are:

_ BB

= 20, snw, cos(nvx —|,uj - U |) (14)

( M bk ) ji

It is convenient to expand the definition of My, and 6, to include the Ap/p term. My is

augmented by adding a column containing the vector Dy. Ap/p is made the last element of the 6
vector. Equation (12) becomes:

e
0 0,
b:% My E ﬁjb%gﬁ (15)
H 5 8 HHoae g
Hp P
EMb.e

The dimensions of My, are N x Nk (where Nk now is the number of kicks + 1).

Equations (11) through (15) assume that the Accumulator lattice at the energy where the
reference orbit was established is the same as the lattice at the various places in the deceleration
ramps where the beam energy is to be measured. Thisis not aways the case. What is done to
account for this is to assume, that to zeroth order, the same lattice is realized at all energies of
interest. The variations in the gradients of the quadrupole magnets that cause the lattice to
change will also kick the beam. The kick from each quadrupole magnet is proportional to the
change in normalized gradient and the displacement of the beam from the central orbit. These
kicks are accommodated in the closed orbit distortion model by allowing akick in the 6 vector
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from each quadrupole Smce we are only interested in accounting for what happens to the orbit,
this approach is suffici ent®. Adding a kick from all of the quadrupoles has the effect of making
the system in equation (15) significantly underdetermined®. The difficulties involved with
solving (15) are dealt with in the next section.

Once equation (15) has been solved for 0, the displacement of the orbit relative to the
reference orbit can be calculated elsewhere in the Accumulator lattice. In particular, we are now
in a position to calculate Ax(s) in the arcs so that the integral in equation (10) can be evaluated.
To do this, a matrix M g is constructed in the same manner as Mk above. M g is the matrix that
connects the kicks to horizontal distortion of the closed orbit in the main bending dipoles. The
elements of My are given by:

My (9, = NI j JB® cos(w, ~|u, (9 0t (16)

2L sinmv,

Where Mak(s);i connects the i™ kick to longitudinal position sin the " dipole. L; is the length of
the i" kick element. The integration is necessary only when the length of the kicker element is
so large that the lattice functions change substantially over its length. In a manner analogous to
equation (15), Axq4(s) in the dipolesis given by:

LY
AXd(S):[:D Mdk (S) E éyd (S)% (17)

aE

=M ,(9)+0

Dq(s) is a vector containing the value of the dispersion function at longitudinal location s in the
dipoles. MgisaNg x Nk dimensional matrix, where Ny is the number of horizontal main bending
dipoles.

The integral in equation (10) becomes a sum of integrals over the main bending dipoles.
Substitution of equation (17) into equation (10) gives:

Ng §*L
Lol + [ [y s
o (18)

Ng StL

=L, +Z i K, [M4(9)6] ds

S

8 This can be checked by calculating the orbit length using the both the reference orbit lattice and using the lattice
where the orbit length is being measured. When thisis done, the difference in the resulting orbit lengths is typically
lessthan 0.1 mm.

® The number of columns of M, is the number of horizontal dipole elements (39) + the number of quadrupole
magnets (84) + 1 (for the 4p/p term). The number of rows of My, is the number of horizontal BPMs, of which there
are 48. Thus, equation (15) represents a system of 48 equations that must be solved for 124 unknown parameters.

-8-
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D. Solving for the kicks

The next step is to solve equation (15) for 6. This requires some care for two reasons:
(1) My, is generally very nearly singular'® and, (2) My, is not square. Moreover, if kicks from all
of the quadrupole magnets are included, the number of columns of My, will significantly exceed
the number of rows (i.e. the system is under-determined). Since My, is not square, there will not
be a unique solution to equation (15). Consequently, some attention must be given to the
selection of solutions that are physically meaningful.

These difficulties are overcome by manipulating the Singular Vaue Decomposition™
(SVD) of Mp. SVD reconstructs My, as the product three matrices:

M, = UsWaVT (19)

U isa Ny X Ny matrix whose columns are orthonormal, W is a Nx X Ny diagonal matrix with non-
negative elements, and V is a Nk x Nx matrix whose columns and rows are orthonormal. For
reasons that will soon become apparent, the diagonal elements of W are called the singular
values of M. These properties of U, W, and V can be summarized as follows:

u.u=1

VTV =V.V' =1 (20)

W, = A4,
The Ai's are the singular values awyl is the Kronecker delta. Generally, the decomposition is
performed in such a way as to place Alig in descending order (i.8; > 12> A3>... Ank).

If Nk >Ny (i.e. if quadrupole kicks are includedyl, must be augmented witkk — Ny
rows of zeros to make it square. The decomposition of the augnidgtesbults in d&J matrix
that isNk X N. In this case at least the I&&t— N, diagonal elements &V will be zero. The
SVD matrices, in this case, retain all of the properties given in (20) above.

From the properties given in (20) for the SVD matrices, an inversh, o given by:
M ;1 =V.Ww™u’
o (21)

(), =%

The problem with this particular inverse M, is thatW is blows up if any of the's are zero
(which will always be the case when quadrupole kicks are included). EManadhly accounts
for kicks from the horizontal dipoles, it is nonetheless likely that some ofitheavill be very
small.

The utility of singular value decomposition is that it makes provision for “factoring out”
the singularity. The SVD matrices are constructed so that the columhbk aaintain an

19'M,, tends to be singular because (1) a Ap/p error and an overall bend bus error are indistinguishable, and (2) the
three and six fold symmetry of the Accumulator causes some degeneracy among the rows of My,

™ For an excellent overview of Singular Value Decomposition see: W. H. Press, S. A. Teukolsky, W. T. Vetterling,
and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Second Edition (Cambridge
University Press, 1992) sections 2.6 and 15.4. The E835 off-line beam energy calculation uses a double precision
version of subroutine SV DCMP taken from this book.

-9-
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orthonormal set of basis vectors spanning the range12 of My, and the columns of V contain an
orthonormal set of basis vectors for the null space™ of My,. Specifically, if the rank of My, is Ng,
then the first N values of A; will be non-zero while the values of A; for Ng <i < Ny will be zero.
The first Nr columns of U will form an orthonormal set of basis vectors for the range of My, and
columns Ng + 1 through N of V form an orthonormal set of basis vectors for the null space of
Myp. To see how this helps, equation (15) will be recast in terms of the projections of each part

on either the range or null space of M.

If b is not in the range of My, equation (15) cannot be solved exactly. There will be a
non-zero residual vector, r, given by:

r=M,+0-b (22)

In this case, the solutions of interest are those that minimize |r|. By definition, M, can “reach”
all vectors within the vector space of its range; therefore, nfiinimizes {|, thenr will not have

a projection_on the range ®,. Writing My, in terms of its SVD matrices and multiplying
through byu" gives:

UTer =(W-VT)0-UT-b (23)

In what follows, the column vector consisting of tilecolumn of any matriXA will be
written asA®. It is useful to note that the vectaf -v, wherev is an appropriately dimensioned
column vector, is given by:

(A7), = 3 A =vTeA" 24

That is,A" -v is a vector containing the inner productvoivith each of the columns &. In
particular, if the columns ok are unit vectors (as is the case with the columng ahdV), the
elements oA .v will be the projection of along each of the columns Af

Each term of equation (23) can now be written in terms of projections on the range or the
null space oMy,.

O}N, components

UTer =
52 % N, — N components

(25)

Since the firstNg columns ofU are basis vectors for the rangehd§, the firstNg elements of
U'.r are zero since is a vector that does not project onto the rangd of r» is a vector that
lies completely outside the rangeMf. The matrix of singular values looks like:

A 00 Enl OE
W=lo of A0 - O (26)
H A

A is theNgr x Nr diagonal matrix containing all of the non-zero singular values. The first term
on the right hand side of equation (23) becomes:

12 The range of amatrix A is the vector space of all vectors b for which A-x = b. The dimension of this space is the
rank of A.

13 The null space of amatrix A is the vector space of all vectors x for which A-x = 0. The dimension of this spaceis
the nullity of A.

-10-
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06, [} Ng components
%)null % N, —N; components

W.VT.B:E«-elc}NR components
0

VT.0=
(27)

N, — N components

0, is the component of 6 that lies outside of the null space of My. Since the last N —Ng
columns ofV form a basis for the null space bf,, these elements o¥ -0 will give the
projection of® on the null space)

null *

The last term in equation (23) is:

O, [} Ny components
2N, =N, components

UTeb = (28)

As in equation (25)b, is the projection ob on the range dfy. b, is the component dj that
lies outside the range dfp.

Substituting (23), (27), and (28) into (23) gives:

(00 [A-0,0 b, 0

H - 0 I 0
20 O U 20

A0, =D, (29)
r,= _bz

Equation (29) shows that the residual is entirely dug.tdlote also that thil — Nr components

of v, are completely arbitrary in that they do not contribute to the residual vector. Thus, there
is a family of solutions of equation (15) that minimize the residual. We will have to further
distinguish among this family of solutions to get tethat is to be used in the closed orbit
distortion model.

From equations (27), (28), and (29), the solutions to equation (22) that minimize the
residual are given by:

0o, O
9 = Vo ! |:|
null D (30)
[A™UgbO
_V.D 0
D 9nuII D

whereUr is theN, x Ng matrix that consists of the firdizr columns ofU. This gives a solution
for © that minimizes the residual and isolates that part of the solution that does not contribute to
the residual.

0=V A ULb+V, 0 (31)

null

whereVr is theNk x Ng matrix containing the firdilr columns oV, andVy is theNk X (N - NR)
matrix that consists of the lals - Ng columns ofV.

-11-
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The singularity of My, gives rise to the second term of equation (31). The first term of
equation (31) can be written in terms of the origina SVD matrices if the inverse of W is re-
defined asfollows:

. 1<N
Vvi—l = |:Hl I R (32)
I > Ng

With this definition, the first term of equation (31) is:
0=(V-W™U )b (33)

The expression in parentheses appears to be identical to what was initially identified as Mp™ in
equation (21). Two things have changed since then: (1) the re-definition of W™ in equation (32)
and, (2) theisolation of the singular term in equation (31).

If My, were not singular, the solution of equation (15) is unique and is given by equation
(33). If My issingular, equation (33) is still a particular solution, however the general solution
now contains an arbitrary contribution from the null space — hence the second term in equation
(31). An important feature of the SVD solution is that equation (33) gives the particular solution
that minimizes the length 6f It is evident from equation (31) that the singular term can only
increaseq |.

The length of® is proportional to the rms kick from all of the kick elements. These
kicks are expected to be small. There are several reasons to look for ® snfalist, the
Accumulator orbit is corrected to be as close as possible to the referente Segibnd, the
physical aperture of the Accumulator places a significant constraint on the magnitude of any
individual kick. Finally, the dipole and quadrupole magnets and their associated power supplies
are limited as to the magnitude of the kick they can give the beam. Therefddechiosen for
the orbit length calculation is the particular solutiorbcf M- 0 that minimizes § | — i.e. the
solution given by equation (33).

One remaining issue must be taken up before leaving the subject of Singular Value
Decomposition. This issue has to do with the proper handling of very small singular values.
Computationally the difference between zero and non-zero is not as clear-cut as it is analytically.
Very small singular values are indicative of a matrix that is badly conditioned. The most likely
consequence of small is the presence of large positive and negative elemerfistimt are
ordered in such way that their individual effectsbovery nearly cancel against each other. The
solution to this problem is to establish a singular value threshold. The SVD threshold is
implemented by another modification to the definitioméf. W™ is now given by:

01

A>A
VVi_l — E'M—l i thresh (34)
B) /]i = Athreﬁh

Ainresn 1S the SVD threshold value.

What must be settled now is where to &4gts. This can be studied by examining the
behavior of@ and t| as a function of the threshold setting. The valueimfequation (34) that
corresponds to the last non-zerd;1$ called the threshold index. The variation@ofvith the

14 Generally, the deviation from the reference orbit is less than 5 mm.

-12 -
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threshold index, 6 (i), can be explicitly seen by writing equation (33) in terms of inner products
with columns of V and U. The resulting expression is:

®ep O

0(i) = ZV(” DiD (35)
U
Thermskick, 8mg(i) and the variation of |r| with the threshold index are then given by:

]

s (1) = N (36)

|r(i)|:|b—Mb-6(i)|

15

10 |

Ax (mm)

10 F

15 F

bpm
Quad Kicks ON
Quad Kicks OFF

20 F

0 80 160 240 320 400 480

Figure 2. This figure shows the difference between the horizonta orbit during the 1997 (' scan and
the horizontal orbit during the February 2000 | scan. The Ax plotted here is given by:
Ax = x(Y’ 1997) - x(P’ 2000). The horizonta axis, s, is the longitudinal position in the Accumulator.
The black diamonds are BPM measurements; the blue line represents the closed orbit distortion model
with quadrupole kicks, the red dashed line is the orbit model without quadrupole kicks. The orbit
difference seen here is much larger than what is encountered during normal running.

Figure 3 and Figure 4 illustrate the information required to determine the value of Aiyresn.
These graphs show the dependence of Gm(i), |r(i)], and AL(i) on the SVD threshold setting. The
reference orbit for this analysis shown in these figures is from the January 2000 scan of the (.
The test orbit is from the August 1997 scan of the Y'. These orbits are useful because: (1) the
length of each is known™, (2) the Au e;qust 1997 Accumulator lattice at the Y’ energy was quite
different from the January 2000 lattice™, and (3) the orbits themselves are significantly different
from one another (see Figure 2). The use of these orbits represents a very severe test of the
calculation. Figure 3 shows the SVD threshold dependence when quadrupole kicks are included
while Figure 4 gives the situation when only horizontal dipole kicks are considered.

15 The length of the Y'(8/1997) orbit is 474.04965 m. The length of the y’(1/2000) orbit is 474.05403 m.

18 A modification of the Accumulator |attice to raise the value of K (for stochastic cooling purposes) had taken place
between these two measurements.
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SVD Index (i)

Figure 3. Gms |r] and AL are calculated with different SVD thresholds. This calculation includes
kicks from al of the quadrupoles. The horizontal axis gives the threshold index, i. The singular
valuesfor i > 48 (= N,) are zero. The vertical red line is the index corresponding to the SV D threshold
used for the orbit length calculation. There is one non-zero singular value below the threshold
(Mg =2.5%107). Fori> 46, |r|<10™ The reference orbit for this analysis is from the January 2000
scan of the Y. Thetest orbit is from the August 1997 scan of the ys'.
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SVD Index (i)

Figure4. G |r| and AL are calculated with different SVD thresholds. This calculation includes only
kicks from the dipole elements in the Accumulator (N, =40). All 40 singular values are non-zero.
The reference orbit for this analysis is from the January 2000 scan of the Y’. The test orbit is from the
August 1997 scan of the .
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What one would like to see is the situation in Figure 3. This figure shows the results of
the orbit length calculation where 6 includes kicks from all of the quadrupoles. The index
corresponding to the singular value threshold was set at i = 47. In the vicinity of this threshold
setting, observe the following: (1) |r| is very small, (2) 8ms is small and not increasing as the
threshold is lowered, (3) thereisalarge (10 order of magnitude) drop in A, and most importantly,
(4) the value of AL is relatively insensitive to where the threshold is set'’. In this case, the
setting of the singular value threshold is unambiguous.

A much less desirable situation is illustrated in Figure 4. Here, 6 only contains kicks
from the horizontal dipoles. In this case, it is difficult to determine where the singular value
threshold should be set. In contrast to the calculation with the quadrupole kicks included, Figure
4 exhibits the following: (1) |r| is relatively large and does not decrease appreciably as the
threshold is lowered, (2) Gns is increasing rapidly as the threshold is lowered, (3) the singular
values (except Ag) are not small, and finally, (4) AL is very sensitive to where the threshold is

There are two conclusions from this analysis of Figure 3 and Figure 4. (1) Kicks from
the quadrupole magnets should be included when the lattice upon which the reference orbit was
measured and that upon which the test orbit was measured differ significantly. (2) Having done
(1), the setting of the singular value threshold is unambiguous.

As a second example and also to document the situation on the present deceleration ramp,
Figure 6 and Figure 7 show the same two analyses for an orbit measured during a scan of the x
resonance in February 2000. The reference orbit used is the January 2000 |’ reference orbit.
The Accumulator lattice at the X1 is not the same as at the Y, however, the difference is much
less than that between (’(1997) and y’(2000).

- (X Scan Feb. 2000 |
L 1 |

Ax (mm)

Quad Kicks ON
--------- Quad Kicks OFF

T S R S M

T

0 80 160 240 320 400 480
s(m)

Figure 5. Horizontal difference orbit during the February, 2000 scan of the x;. The Ax plotted hereis
given by: Ax = X(X1) - X(¥).

Figure 5 shows the horizontal difference orbit (relative to the ’ reference orbit) during
the February 2000 scan of the x; resonance. Figure 6 and Figure 7 show the variation of Gm(i),

¥ The value of the orhit length measured using the SVD threshold setting indicated in Figure 3 was 0.05 mm
different from the orbit length established for this orbit during the August, 1997 ' scan.
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Ir(i)], and AL(i) with the SVD threshold setting. The analysis of Figure 6 includes quadrupole
kicks; the analysis of Figure 7 does not.
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Figure 6. G, |r| and AL are calculated with different SVD thresholds. This calculation includes kicks
from al of the quadrupoles.
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Figure 7. s |r| and AL are calculated with different SVD thresholds. This calculation includes only
kicks from the dipole elementsin the Accumulator (N = 40).

As was the case with the analysis of Figure 3 and Figure 4, the stability of the solution is
much greater if kicks from the quadrupoles are allowed. The kicks calculated at the dipoles and
guadrupoles from the analysis associated with Figure 6 is shown in Figure 8. The analysis that
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includes quadrupole kicks results in an orbit length of 474.05543 m (1.39 mm greater than the

length of the reference orbit).

The analysis that excludes quadruple kicks results in an orbit

length of 474.05484 m (0.80 mm greater than the length of the reference orhit).

0.4

03

- [ x, Scan Feb. 2000 |
Quad Kicks ON

0.2

0.1

0.0 [

6 (mrad)

-0.1

-0.2

-0.3

04 b

g
dipole
e
quad
80 160 240 320 400 480
s(m)

Figure 8. Kicks calculated from the Ax shown in Figure 5 and the analysis of Figure 6.

E. BPM Constants

Since the matrix M, depends only on the Accumulator lattice and the BPM weights (g in
equation (13)), the SVD anaysis need only be performed once'®. All of the information
contained in My, can be compressed into a vector, C, of N, BPM constants such that equation

(18) can be written as:

L=L,, +CeOX, (37)

From equation (18), C.Ax, isgiven by:

C.AX,

Ng §*Li

Ky |M4(9)+0] ds
J [ ]

Ng StL K 0
[ & %. M, (5)6, [gis
] = D

Ng §StL K 0
[ é'i M, (96 G
S = D

Ng §+Li

: 0
= M, (s)(V-W™UTb)
R A ) gs

1 1

(38)

1

18|t ahorizontal BPM fails or its readout becomes unreliable, it is masked out of the calculation by setting its o to a
very large number. Since this changes My, the SVD analysis must be performed again.
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The last line follows from equation (33). For purposes of ssimplifying the notation somewhat,
define the matrix M as

StL

M; = ! \ (s)ds (39

Putting this into equation (38) yields:

CeAx, =K ZZM (V-wLUTeb)

:KNZJNZNZM (V-W‘l-UT)JkA—Xq (40)

Oy

SIS

N IS the index of the smallest singular value above thr&sholdlg. The BPM constants — i.e.
elements oL, are:

Ny Ny Ny

Z Z 2 M, '” (41)

Il A Test of the Beam Energy Calculation

The best test of the orbit length calculation is to evaluate its ability to properly determine
the length of an orbit of known length. This test has been done using the reference orbit for the
1997 E835 run as the test orbit. This is the orbit measured during the August 1997 scan of the
Y, described earlier. An analysis of the orbit length calculation for this orbit is given above in
section 11.D (see Figure 2, Figure 3, and Figure 4). Thisisavery rigorous test of the orbit length
calculation since this orbit is significantly different from the present reference orbit (see Figure
2) and the Accumulator lattice at that time was different from the present lattice.

In 1997, the length of this orbit was determined to be 474.04965 m + 0.60 £ 0.07 mm.
The first uncertainty quoted is derived from the uncertainty in the published mass of the ¢’ (cf.
Equation (6)). The second uncertainty is from the statistical uncertainty in the determination of
the beam energy when the orbit was measured. The statistical uncertainty is the uncertainty in
the determination of ' mass from the resonance excitation measured during the scan.

The length of this orbit using the January, 2000  reference orbit is 474.04970 m®. This
is just 0.05 mm different from the length determined in 1997. This measurement is well within
the uncertainty in the length of this orbit as determined from the resonance scan.

19 Recall that the A's occur in descending order.
% The orbit length calculation producing this result included quadrupole kicks.
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Appendix: Derivation of Equation (10)

l. Separating out the length of the reference orbit

The expression for the orbit length, written in terms of the reference orbit and the
horizontal and vertical displacementsfromiit, is:

L :ﬂs\/1+2/(x(xr +AX) +K2 (% +Ox)"+(X +0X) +(y, +Ay ) ds (A-1)

Rearranging things alittle gives:

[ 1+ 20,% + (k% )+ X2+ 2
L= 2K2 2 2 ! ' ] ' 12 12 Dds (A-Z)
] + 12K Ax+ 26 5% DX+ (K, AX) +2(XAX + Y AY') + AX 2 + Ay 2 H

Note that if the terms in the square brackets were zero, the length in equation (A-2) reduces to
the length of the reference orbit, L. To simplify the next part of the calculation, the terms in
the square brackets will be collectively designated oF (X, %", y:'; AX,AX',4y’) and the terms having
to do with the length of the reference orbit will be designated (%, x/,y;). Equation (A-2)
becomes:

L =36 1+JF, +oFds (A-3)
where,
OF (X, %, ¥;) = 2K, X H KO+ X +Y? (A-4)
OF (X, X, Y, ; AX, AKX, AY') = 2 AX+ 2K 2% AX+ KZAXE +2( X AX + Y.AY') + AX? + Ay'?

The procedure now is to expand the integrand of equation (A-3) i in a power seriesin d;
and &F. Thisisvalidif o + J& < 1; acondition that is certain to be true'. Two applications of
the binomial theorem to the integrand of (A-3) gives:

JI¥OF +3F = ZEVEMFMF
_1+ZD SZ %F”%Fm (A-5)

_ U o S
= ;D D]ﬂ: ;%’n%ﬁﬁ oF E

! x and y are typically less than 10mm. p=17.46m in the arcs of the Accumulator. Therefore,
10mm

17.46m

K X<

=5.9x10". Thederivatives of x and y are typically lessthan Imm/m (i.e. x’, y’< 1 X107).

A-1



continuing:

00 [ n n
J1+9F +9JF = E%%F +Z E%ED EﬁF,”‘mJFm
n= Dn n=1 m= Dn L]
(A-6)
EVEDn O

=1+ 0F, +ZZl - %n[ﬁF”‘mJFm

The integration of the first term of the final expression of (A-6) isjust the length of the reference
orbit. Substitution of thisresult into equation (A-3) gives:

L=L, +%§I ;%:@F“mcﬂ:m[pls (A-7)

This equation is exact. The problem has been reduced to a calculation of a correction to be
applied to the length of the reference orbit.

1. Identifying the important terms

Ultimately, we're interested in calculating the first order correctiob,§o For the time
being, all terms up to second order will be retained. Table A-1 gives those terms of equation
(A-7) with nm< 2 up to 2% order.

Table A-1. Orbit Length Expansion Termsto 2" Order

E&émn[ n-m m
™ B P OF""SF
on L
1|1 % 2K DX+ 26 EX DX+ KA +2( X AX + Y AY') + AX? + Ay’
1 2
211 —-— | 4k X AX
4
1 2 2
2|2 -5 | A

With all second order and lower terms explicitly included, equation (A-7) becomes:

AX:Z ;Ayr2 N

L=L,+ % %(XAX+ XAX +y Ay + 0(3) Egs (A-8)
O O

The only first order term in this expression is the first term in the integrand. Therefore, to first
order, the orbit length is given by:

L=Lg+ QSKXAxds (A-9)



